
AMSI Summer School: Stochastic Transport Modelling Quiz
Consider a single agent moving on an infinite one-dimensional uniform lattice. Suppose

that the agent starts at the origin, x = 0, and moves a short distance δ > 0 either left or right in
a short time interval of duration τ > 0. The motion is completely random, so the probability of
moving left or right are 1/2. This simple random walk proceeds by repeating each random step
n times:

1. Write down an expression for the expected displacement of the agent after n = 1 time
step.

2. Write down an expression for the expected squared displacement of the agent after n = 1
time step.

3. Suppose that p(m,n) is the probability that the agent resides m lattice sites after taking
n steps. Note that m and n are integers. With this information, provide a hand-drawn
sketch of p(m,1), p(m,2), p(m,3) and p(m,4) on the interval −5 ≤ m ≤ 5.

4. Using your insight from the previous question convince your self that the probability that
an agent will be at a distance mδ to the right of the origin after n time steps, where m and
n are even, is given by

p(m,n) =
(

1
2

)n( n
[n−m]/2

)
=

n!
2n((n+m)/2)!((n−m)/2)!

(1)

5. Use a computer to plot p(m,n) for large n to visualise this discrete distribution. Take care
with the range of m over which you plot the distributions. What do you notice?

6. For large n this distribution approaches a normal distribution, so after a large amount
of time t = nτ, the location x = mδ of the agent is normally distributed with zero mean
and variance δ2t/τ. Constructing a limit δ → 0 and τ → 0 with care such that δ2/τ = 2D,
where D is a constant called the diffusion constant, gives a continuous probability density
function for the location of the agent at time t,

p(x, t) =
1√

4πDt
exp

(
−x2

4Dt

)
(2)

Use a computer to make several plots of the discrete distribution p(m,n) and the corre-
sponding continuous distribution p(x, t) and compare the distributions? Hint: be careful
to ensure you are making a valid comparison by comparing p(m,n) and 2× p(x, t) and
think about why this is necessary.

7. Using your explorations can you identify and describe situations where one approach
makes more sense than the other?
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1.
1
2
×δ+

1
2
×−δ = 0.

2.
1
2
× (δ)2 +

1
2
× (−δ)2 = δ2.

3. See hand-drawn sketch attached.

4. Continuing with the pattern developed in the hand-drawn sketch we see that after an
even number of steps that the agent can only be an even number of steps away from the
origin, or after an off number of steps the agent can only be an odd number of steps away.
Continuing with this pattern, after n steps we have

p(m,n) =
(

1
2

)n( n
[n−m]/2

)
, (3)

provided that m and n are even.

5. See code and plots. Plotting p(m,n) as n ≫ 1 we see that the discrete distribution be-
comes increasingly smooth by visual inspection.

6. See code and plots. Superimposing plots of p(m,n) and 2p(x, t) we see computational
evidence that p(m,n)→ 2p(x, t) as n → ∞.

7. Comparing p(m,n) and 2p(x, t) reveals the approximate nature of the continuous distri-
bution. In the discrete distribution we always have p(m,n) = 0 for all locations and times
satisfying |m| > n since it is physically impossible for an agent to move away from the
origin faster than one site per time step. In comparison, with the continuous distribu-
tion we have p(x, t) > 0 for all −∞ < x < ∞, no matter how small t is! The continuous
approximation is, in this sense completely unphysical. This observation is a good re-
minder that we are working with an approximation that is sometimes useful but can also
be misleading.
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