AMSI Summer School 2020

Stochastic Modelling

Pre-course Quiz

- 1. Suppose A and B are events on the same probability space, use the axioms of probability to show that
 - (a) If $A \subset B$, then $\mathbb{P}(B \cap A^c) = \mathbb{P}(B) \mathbb{P}(A)$;
 - (b) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- 2. A new surgical procedure is successful with probability p. Assume that this procedure is performed five times and the results are independent of each other.
 - (a) What is the probability of five surgical procedures being successful if p = 0.8?
 - (b) What is the probability that exactly four surgical procedures are successful if p = 0.6?
 - (c) What is the probability that less than two surgical procedures are successful if p = 0.3?
- 3. Suppose $X_1, X_2, ...$ is a sequence of independent and identically distributed random variables with

$$\mathbb{E}[X_i] = \mu$$
 and $\operatorname{Var}[X_i] = \sigma^2$,

define the random variable

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

- (a) Derive an expression for $\mathbb{E}[\overline{X}_n]$ and $\operatorname{Var}[\overline{X}_n]$.
- (b) For any random variable Y that takes non-negative values only, Markov's inequality says

$$\mathbb{P}(Y \ge a) \le \frac{\mathbb{E}[Y]}{a}$$
 for any constant $a > 0$.

Using this result, or otherwise, prove the Tchebyshev's Inequality: If X is a random variable with finite mean $\mathbb{E}[X] = \mu$ and finite variance $\text{Var}[X] = \sigma^2$, then for any constant k > 0,

$$\mathbb{P}(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}.$$

4. Consider a four-state discrete-time Markov chain defined on the state space $S = \{0, 1, 2, 3\}$ with transition matrix

$$P = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 \\ 0 & 1/4 & 0 & 3/4 \\ 0 & 1/4 & 3/4 & 0 \end{bmatrix}.$$

Find $[P^{(3)}]_{2,2}$, the three-step transition probability that, given the system has started in state 2 at time zero, it will be in state 2 in time 2.

1

Solutions

1. (a) Note that $\{B \cap A\}$ and $\{B \cap A^c\}$ is a partition of B. We have

$$B = (B \cap A) \cup (B \cap A^c) = A \cup (B \cap A^c),$$

where the second equality follows because $A \subset B$ implies $A \cap B = A$. As A and $B \cup A^c$ are disjoint, by Axiom 3,

$$\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \cap A^c) \quad \Rightarrow \quad \mathbb{P}(B \cap A^c) = \mathbb{P}(B) - \mathbb{P}(A).$$

(b) Note that $A \cap B$, $A \cap B^c$ is a partition of A: $A = (A \cap B) \cup (A \cap B^c)$. As $A \cap B$ and $A \cap B^c$ are disjoint,

$$\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap B^c)$$

$$\Rightarrow \mathbb{P}(A \cap B^c) = \mathbb{P}(A) - \mathbb{P}(A \cap B). \tag{1}$$

Furthermore, $B, A \cap B^c$ is a partition of $A \cup B$: $A \cup B = B \cup (A \cap B^c)$. As B and $A \cap B^c$ are disjoint,

$$\mathbb{P}(A \cup B) = \mathbb{P}(B) + \mathbb{P}(A \cap B^c). \tag{2}$$

Substituting (1) into (2) gives us $\mathbb{P}(A \cup B) = \mathbb{P}(B) + \mathbb{P}(A) - \mathbb{P}(A \cap B)$.

2. (a) Let Y be a random variable counting the number of successful surgical procedures, Then, $Y \sim \text{Bin}(5, p)$, where p = probability of a successful surgical procedure, and

$$\mathbb{P}(Y=5) = {5 \choose 5} (0.2)^0 (0.8)^5 \approx 0.3277.$$

(b)
$$\mathbb{P}(Y=4) = {5 \choose 4} (0.4)(0.6)^4 \approx 0.2592.$$

(c)
$$\mathbb{P}(Y < 2) = \mathbb{P}(Y = 0) + \mathbb{P}(Y = 1) = \binom{5}{0}(0.7)^5(0.3)^0 + \binom{5}{1}(0.7)^4(0.3) \approx 0.5282.$$

3. (a)

$$\mathbb{E}[\overline{X}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\mathbb{E}\left[\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n}n\mu = \mu,$$

$$\operatorname{Var}[\overline{X}_n] = \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\operatorname{Var}\left[\sum_{i=1}^n X_i\right] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}.$$

(b) If X is a random variable with finite mean $\mathbb{E}[X] = \mu$ and finite variance $\text{Var}[X] = \sigma^2$, then for any constant k > 0,

$$\begin{split} \mathbb{P}(|X-\mu| \geq k\sigma) &= \mathbb{P}\left(\frac{|X-\mu|}{\sigma} \geq k\right) = \mathbb{P}\left(\frac{(X-\mu)^2}{\sigma^2} \geq k^2\right) \\ &= \mathbb{P}(Y \geq a), \quad \text{where } Y = (X-\mu)^2/\sigma^2 \geq 0 \text{ and } a = k^2 > 0, \\ &\leq \frac{\mathbb{E}[Y]}{k^2} = \frac{1}{k^2}, \text{ from above, as } \mathbb{E}[(X-\mu)^2] = \sigma^2. \end{split}$$

4.

$$P^{3} = \begin{bmatrix} 1/4 & 9/32 & 3/16 & 9/32 \\ 9/64 & 13/64 & 21/32 & 0 \\ 5/64 & 7/32 & 9/64 & 9/16 \\ 5/64 & 7/32 & 9/16 & 9/64 \end{bmatrix}.$$

Therefore $[P^3]_{2,2} = 9/64$.