AMSI SS2020: GEOMETRIC GROUP THEORY - PRE-QUIZ

- 1. Let n be an integer. Prove that if n^2 is even then n is even.
- 2. (a) How many binary strings of length n do not contain a factor 11?
 - (b) How many binary strings of length n do not contain a factor 11 and have final digit 1?
- 3. (a) Define the terms equivalence relation and equivalence class.
 - (b) Prove that if G is a group and H is a subgroup, then the left (respectively, right) cosets of H in G are equivalence classes of some equivalence relation.
 - (c) Show that H is normal¹ if and only if these two equivalence relations (left, right cosets) are actually the same.
 - (d) If H is normal, define the quotient group G/H and show that it is a group.
 - (e) Give (non-trivial!) examples of G, H and G/H.
 - (f) Give an example to show why this definition does not yield a group if H is not a normal.
- 4. State the first isomorphism theorem for groups.

END OF QUIZ

Solutions:

- 1. Contrapositive. If n is odd then n = 2k + 1 for some $k \in \mathbb{Z}$. Then $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ is odd. The result is the contrapositive statement.
- 2. (a) Recursive. If b_n is the number of binary strings of length n without a 11 factor, then $b_0 = 1$ and $b_1 = 2$. A string of length $n \ge$ either starts with 0 or 1. If it starts with 0, the next letter can be anything, so there are b_{n-1} possible strings. If it starts with 1, the next letter must be 0, and then anything, so there are b_{n-2} possible strings. So in total $b_n = b_{n-1} + b_{n-2}$. This is the Fibonacci sequence (starting at 1, 2).
 - (b) If c_n is the number of strings without 11 and ending with 1, then $c_0 = 0, c_1 = 1$. For $n \ge 2$ the last two digits must be 01 and we have b_{n-2} possible prefixes. So this is also the Fibonacci sequence (starting at 0, 1).
- 3. (a) Let S be a set and $\mathscr{R} \subseteq S \times S$. We call \mathscr{R} an equivalence relation if it is reflexive $((s,s) \in \mathscr{R} \text{ for every } s \in S)$, symmetric $((s,t) \in \mathscr{R} \text{ implies } (t,s) \in \mathscr{R})$ and transitive $((r,s),(s,t) \in \mathscr{R} \text{ implies } (r,t) \in \mathscr{R})$. The equivalence class of an element $s \in S$ is then defined as $[s]_{\mathscr{R}} = \{t \in S \mid (s,t) \in \mathscr{R}\}$.
 - (b) Define a relation \mathscr{L} on G by $(a,b) \in \mathscr{L}$ if $a^{-1}b \in H$.
 - reflexive: $\forall a \in G, a^{-1}a = 1 \in H \text{ since } H \text{ is a subgroup, so } (a, a) \in \mathcal{L}$
 - symmetric: $a^{-1}b \in H$ if and only if $(a^{-1}b)^{-1} = b^{-1}a \in H$ since H is a subgroup.
 - transitive: if $a^{-1}b, b^{-1}c \in H$ then $(a^{-1}a)(b^{-1}c) = a^{-1}c \in H$ since H is a subgroup.

Then $[a]_{\mathscr{L}} = \{b \in G \mid a^{-1}b \in H\} = \{b \in G \mid b \in aH\} = aH \text{ is the left coset containing } a.$

For the right cosets define \mathscr{R} on G by $(a,b) \in \mathscr{R}$ if $ba^{-1} \in H$, which is an equivalence relation by a similar argument. Then $[a]_{\mathscr{R}} = \{b \in G \mid ba^{-1} \in H\} = \{b \in G \mid b \in Ha\} = Ha$ is the right coset containing a.

(c) Definition: H is normal if $g^{-1}hg \in H$ for all $g \in G, h \in H$.

Assume H is normal, then $(a,b) \in \mathcal{L}$ iff $a^{-1}b \in H$ iff $a^{-1}b = h$ for some $h \in H$ iff $ba^{-1} = a(a^{-1}b)a^{-1} = aha^{-1} \in H$ since H is normal, so $(a,b) \in \mathcal{L}$ iff $(a,b) \in \mathcal{R}$, so the two equivalence relations (left, right cosets) are actually the same.

If H is not normal then $aha^{-1} \not\in H$ for some $a \in G, h \in H$ by definition, so $(a, ah) \not\in \mathscr{R}$ but $a^{-1}ah \in H$ so $(a, ah) \in \mathscr{L}$ so the two equivalence relations are not the same.

(d) G/H is the set of all (left) cosets with the operation aH * bH = (ab)H (where the group operation on G is denoted by juxtaposition). This is well defined since if you choose different elements to be coset representatives, say cH = aH and dH = bH (so $a^{-1}c, b^{-1}d \in H$) then $b^{-1}a^{-1}cd = b^{-1}hd = b^{-1}dh' \in H$ so (ab)H = (cd)H (here we are using that H is normal).

This is a group since the axioms

- identity: H
- inverse: for each aH there is $a^{-1}H$ so that $aH * a^{-1} = (aa^{-1})H = 1.H = H$.
- associative: (inherited from G)

are satisfied.

- (e) A non-trivial example should probably be a non-abelian group: S_3 the set of permutations of $\{1, 2, 3\}$. Its subgroup A_3 of even permutations (in cycle notation (), (123), (132)) is normal; this can be checked brute-force using the multiplication table, or by observing that A_3 has index 2 in S_3 and any subgroup of index 2 must be normal: if $g \notin H$ then $gH \neq H$ so gH = Hg.
- (f) ² Now take the subgroup $H = \{e, (12)\}$ which is not normal since (13)(12)(13) = (23). Suppose the set of (left) cosets was a group with the multiplication as defined (simply by juxtaposition). There are three left cosets: $H, (13)H = \{(13), (123)\}, (23)H = \{(23), (132)\}$. Now (13)H * (23)H is defined to be ((13)(23))H = (132)H but if we instead choose different coset representatives (123)H * (23)H = (12)H = H.
- 4. Let G and H be groups, and let $f: G \to H$ be a homomorphism. Then:
 - the kernel of f is a normal subgroup of G,
 - the image of f is a subgroup of H, and
 - the image of f is isomorphic to the quotient group $G/\ker(f)$.

In particular, if f is surjective then H is isomorphic to $G/\ker(f)$.

If you got stuck with the group theory questions, try going through any textbook with Abstract Algebra in the title. A nice short one is Lauritzen Concrete Abstract Algebra Chapter 2. Much more elegant solutions than the above are of course possible.

²Convention: I am applying permutations left to right. For example (13)(12) = (123) which in one-line notation (as maps) would be $\frac{1}{3} \frac{2}{3} \frac{3}{1}$.