Finite Element Method: Background Materials

Bishnu P. Lamichhane, bishnu.lamichhane@newcastle.edu.au

School of Mathematical and Physical Sciences, Faculty of Science, University of Newcastle, Australia

July 5, 2019

Field

 $a \in \mathbb{F}$, $a \cdot 1 = a$.

We define a **field** $\mathbb F$ as a set together with two operations, usually called addition and multiplication, and denoted by + and \cdot , respectively, such that the following axioms hold.

- ① Closure of $\mathbb F$ under addition and multiplication: $a+b\in\mathbb F$, and $a\cdot b\in\mathbb F$ for all $a,b\in\mathbb F$.
- **2** Associativity of addition and multiplication: a+(b+c)=(a+b)+c, and $a\cdot(b\cdot c)=(a\cdot b)\cdot c$ for all $a,b,c\in\mathbb{F}$.
 - **3** Commutativity of addition and multiplication: a+b=b+a, and $a\cdot b=b\cdot a$ for all $a,b\in \mathbb{F}.$
- **4** Existence of additive and multiplicative identity elements: There exists some element in $\mathbb F$ and denoted by 0, such that for all $a \in \mathbb F$, a+0=a. Similarly, there is some element in $\mathbb F$ and denoted by 1, such that for all
- **3** Existence of additive inverses and multiplicative inverses: For every $a \in \mathbb{F}$, there exists an element $-a \in \mathbb{F}$, such that a + (-a) = 0. Likewise, for any $a \in \mathbb{F}$ other than 0, there exists an element $a^{-1} \in \mathbb{F}$, such that $a \cdot a^{-1} = 1$.
- **①** Distributivity of multiplication over addition: $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for all $a,b,c \in \mathbb{F}$.

Vector Space

A vector space over a field $\mathbb F$ is a set $\mathcal V$ together with two operations vector addition, denoted $v+w\in \mathcal V$ for $v,w\in \mathcal V$ and scalar multiplication, denoted $av\in \mathcal V$ for $a\in \mathbb F$ and $v\in \mathcal V$, such that the following assumptions are satisfied:

- 2 $u + (v + w) = (u + v) + w, u, v, w \in \mathcal{V}.$
- $\textbf{3} \ \ \text{There exists an element } 0 \in \mathcal{V} \text{, called the zero vector, such that } \\ v+0=v, \ \ v \in \mathcal{V}.$
- $a(bv) = (ab)v, \ a, b \in \mathbb{F} \text{ and } v \in \mathcal{V}.$
- $a(v+w) = av + aw, \ a \in \mathbb{F} \text{ and } v, w \in \mathcal{V}.$
- $\textbf{ 1 There exists a multiplicative identity } 1 \in \mathbb{F} \text{ such that } 1v = v, \ \ v \in \mathcal{V}.$

Vector Space

The elements of a vector space are called *vectors*. A subset \mathcal{S} of a vector space \mathcal{V} is a *subspace* of \mathcal{V} if it is a vector space with respect to the vector space operations on \mathcal{V} . A subspace which is a proper subset of the whole space is called a *proper subspace*.

If v_1, v_2, \ldots, v_n are some elements of a vector space \mathcal{V} , by a *linear combination* of v_1, \ldots, v_n we mean an element in \mathcal{V} of the form $a_1v_1 + \cdots + a_nv_n$, with $a_i \in \mathbb{F}, i = 1, \ldots, n$.

Let S be a subset of \mathcal{V} . The set of all *linear combinations* of elements of S is called the *span* of S and is denoted by span S. If $S = \{v_1, v_2, \ldots, v_n\}$, then we often write $S = \{v_i\}_{i=1}^n$.

A subset $S = \{v_i\}_{i=1}^n$ of \mathcal{V} is said to be *linearly independent* if and only if

$$a_1v_1 + \cdots + a_nv_n = 0, \implies a_i = 0, i = 1, \dots, n.$$

A subset is said to be *linearly dependent* if it is not linearly independent.

A Basis of a Vector Space

S is said to be a *basis* of $\mathcal V$ if it is linearly independent and span $S=\mathcal V$. The *dimension* of a finite dimensional vector space $\mathcal V$ is the number of elements in a basis for $\mathcal V$. The number of elements in a set is termed the *cardinality* of the set.

Let $\{v_i\}_{i=1}^n$ be a basis for \mathcal{V} . For $v = a_1v_1 + \cdots, a_nv_n$, $\{a_i\}_{i=1}^n$ are called coordinates of v with respect to the basis \mathcal{V} .

- An example of a vector space is the *Euclidean space* \mathbb{R}^n over the field of real or complex numbers.
- \bullet Another example is the the space of polynomials of degree $m\in\mathbb{N}$ on \mathbb{R} by

$$\mathcal{P}_m(\mathbb{R}) = \Big\{ p : p(x) = \sum_{i=0}^m a_i x^i, \ x \in \mathbb{R} \Big\}.$$

This is a vector space over the field of real or complex numbers.

A Norm on a Vector Space

A $norm \parallel \cdot \parallel$ on a vector space $\mathcal V$ is a function from $\mathcal V$ to $\mathbb R$ such that for every $v,w\in \mathcal V$ and $a\in \mathbb F$ the following three properties are fulfilled

- **1** $||v|| \ge 0$, and $||v|| = 0 \iff v = 0$.
- ||av|| = |a|||v||.
- $||v+w|| \le ||v|| + ||w||.$

A vector space $\mathcal V$ together with a norm is called a *normed vector space* or simply a *normed space*. An *inner product space* $\mathcal V$ is also a *normed space*.

The Euclidean space \mathbb{R}^n is a normed space, where the norm of a vector $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ is given by

$$\|\mathbf{x}\| = \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}}.$$

Inner Product on a Vector Space

An inner product on a vector space $\mathcal V$ is a map from $\mathcal V$ to $\mathbb F$ which satisfies the following assumptions

- v $\langle v, v \rangle \geq 0, v \in \mathcal{V}$, and $\langle v, v \rangle = 0 \iff v = 0$.

A vector space $\mathcal V$ together with an inner product $\langle \cdot, \cdot \rangle$ is called an *inner product space*.

Two vectors v and w in an inner product space are said to be orthogonal if $\langle v,w\rangle=0$. Two vectors v and w are said to be orthonormal if they are orthogonal and ||v||=||w||=1. The Euclidean space \mathbb{R}^n is an inner product space with inner product defined by $\langle \mathbf{x},\mathbf{y}\rangle=\sum_{i=1}^n x_iy_i$ with $\mathbf{x}=(x_1,\ldots,x_n)$ and $\mathbf{y}=(y_1,\ldots,y_n)$. The norm $\|\mathbf{x}\|$ is induced by the inner product $\|\mathbf{x}\|=\langle \mathbf{x},\mathbf{x}\rangle^{\frac{1}{2}}$.

Function Space of Continuous Functions

Let \mathbb{Z}_+ be the set of non-negative integers, and $d \in \{1,2,3\}$. In the following Ω is an open subset of \mathbb{R}^d with piecewise smooth boundary.

- **1** The short-hand notation for the mixed partial derivative of a function can be written in terms of the so-called multi-index notation α , which is an d-tuple of non-negative integers α_i so that $\alpha:=(\alpha_1,\cdots,\alpha_d)$. The length of α is given by $|\alpha|:=\sum_{i=1}^d \alpha_i$. We use $\mathbf{0}=(0,\cdots,0)$.
- ② $C^k(\Omega)$ denotes the set of all continuous real-valued functions on Ω such that $D^\alpha u$ is also continuous on Ω for all

$$\alpha = (\alpha_1, \dots, \alpha_d)$$
 with $|\alpha| \le k$, $k \in \mathbb{Z}_+$.

 $\textbf{ § For a function } \phi \in C^{|\alpha|}(\Omega), \ D^{\alpha}\phi \ \text{will denote the usual point-wise} \\ \text{mixed partial derivative } \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_d}\right)^{\alpha_d}\phi.$

Function Space

Suppose that $\Omega \subset \mathbb{R}^3$. Then for a function $u \in C^3(\Omega)$ we have

$$\sum_{|\alpha|=3} D^{\alpha} u = \frac{\partial^{3} u}{\partial x_{1}^{3}} + \frac{\partial^{3} u}{\partial x_{2}^{3}} + \frac{\partial^{3} u}{\partial x_{3}^{3}} + \frac{\partial^{3} u}{\partial x_{1}^{2} \partial x_{2}} + \frac{\partial^{3} u}{\partial x_{1}^{2} \partial x_{3}} + \frac{\partial^{3} u}{\partial x_{1} \partial x_{2}^{2}} + \frac{\partial^{3} u}{\partial x_{1} \partial x_{2}^{2}} + \frac{\partial^{3} u}{\partial x_{2} \partial x_{3}^{2}} + \frac{\partial^{3} u}{\partial x_{2} \partial x_{2}^{2}} + \frac{\partial^{3} u}{\partial x_{1} \partial x_{2} \partial x_{3}^{2}}.$$

If Ω is a bounded open set, $C^k(\bar{\Omega})$ denotes the set of all $u \in C^k(\Omega)$ such that $D^{\alpha}u$ can be extended to a continuous function on $\bar{\Omega}$, the closure of Ω , for all

$$\alpha = (\alpha_1, \cdots, \alpha_d)$$
 with $|\alpha| < k$.

We can use the following norm for functions in $C^k(\bar{\Omega})$:

$$||u||_{C^k(\bar{\Omega})} = \sum_{k=1}^n \sup |D^{\alpha}u(\boldsymbol{x})|.$$

It is standard to write $C(\bar{\Omega})$ for $C^0(\bar{\Omega})$ when k=0.

Function Space: Example

Let $w: \mathbb{R}^d \to \mathbb{R}$ be defined by

$$w(\boldsymbol{x}) = \begin{cases} e^{-\frac{1}{1-\|\boldsymbol{x}\|^2}}, & \text{if} \quad |\boldsymbol{x}| < 1 \\ 0, & \text{otherwise}; \end{cases}$$

where $\|x\| = \sqrt{\sum_{k=1}^d x_k^2}$. Note that the *support* of a continuous function defined on an open set $\Omega \subset \mathbb{R}^d$ is the closure in Ω of the set

$$\{ \boldsymbol{x} \in \Omega : u(\boldsymbol{x}) \neq 0 \}$$

denoted by $\operatorname{supp} u$. If $\operatorname{supp} u$ is a bounded subset of Ω , u is said to be compactly supported in Ω . A closed and bounded set $K \subset \mathbb{R}^d$ is compact. In the previous example the support of w is compact with

$$supp w = \{ x \in \mathbb{R}^d : ||x|| \le 1 \}.$$

Let $C_0^k(\Omega)$ be the set of all $u \in C^k(\Omega)$ such that $\operatorname{supp} u$ is a bounded subset of Ω . We often use the notation

$$C_0^{\infty}(\Omega) = \bigcap_{k=0}^{\infty} C_0^k(\Omega).$$

Weak Derivative

The set of functions which are differentiable infinitely many times is denoted by $C^\infty(\Omega)$ and the set $L^1_{loc}(\Omega)$ of locally integrable functions is defined by

$$L^1_{loc}(\Omega) := \{ u | u \in L^1(K), \text{ compact } K \subset \Omega \}.$$

The definition of the weak derivative is given in terms of the set of functions $\mathcal{D}(\Omega)$ with $\mathcal{D}(\Omega):=\{u\in C^\infty(\Omega): \operatorname{supp} u \text{ is compact}\}$. A function $f\in L^1_{loc}(\Omega)$ has a weak derivative $D^\alpha_w f$ if there exists a function $g\in L^1_{loc}(\Omega)$ such that

$$\int_{\Omega} g(\boldsymbol{x})\phi(\boldsymbol{x}) \ d\boldsymbol{x} = (-1)^{|\alpha|} \int_{\Omega} f(\boldsymbol{x}) D_w^{\alpha} \phi(\boldsymbol{x}) \ d\boldsymbol{x}, \quad \phi \in \mathcal{D}(\Omega).$$

If such a g exists, we define $D_w^{\alpha}f:=g$. From now on, we will merely use $D^{\alpha}\phi$ instead of $D_w^{\alpha}\phi$ to denote the weak derivative of ϕ .

Weak Derivative: Example

Consider the function $u(x) = (1 - |x|)_+$, where

$$(x)_{+} = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{else.} \end{cases}$$

This function is not differentiable at the points 0 and ± 1 . However, we can compute a weak derivative of u. For $v \in \mathcal{D}(\mathbb{R})$

$$\int_{\mathbb{R}} u(x)v'(x) dx = \int_{-1}^{1} (1 - |x|)v'(x) dx$$

$$= \int_{-1}^{0} (1 + x)v'(x) dx + \int_{0}^{1} (1 - x)v'(x) dx$$

$$= \int_{-1}^{0} (-1)v(x) dx + \int_{0}^{1} (+1)v(x) dx = -\int_{\mathbb{R}} g(x)v(x) dx,$$

where

$$g(x) = \begin{cases} 0, & \text{if } x < -1\\ 1, & \text{if } x \in (-1, 0)\\ -1, & \text{if } x \in (0, 1)\\ 0, & \text{if } x > 1. \end{cases}$$

Normed and Inner Product Spaces

The function space $C^k(\Omega)$ equipped with the the following norm

$$||u||_{C^k(\Omega)} = \sup_{\boldsymbol{x} \in \Omega} \sum_{|\alpha| < k} |D^{\alpha}u(\boldsymbol{x})|$$

is an example of normed space. We can measure the distance between two functions u and v of $C^k(\Omega)$ by using the above norm.

Let H be a normed space equipped with the norm $\|\cdot\|_H$. A sequence $\{x_n\}$ in a normed space H converges to an element $x\in H$ if $\lim_{n\to\infty}\|x_n-x\|_H\to 0$. We write $x_n\to x$. This is convergence in the norm.

If a function space H is equipped with an inner product $\langle\cdot,\cdot\rangle_H$, it is called an inner product space. For example, the set of square integrable functions $L^2(\Omega)$ is an inner product space. The inner product for two functions f and g of $L^2(\Omega)$ is defined as

$$\langle f, g \rangle_{L^2(\Omega)} = \int_{\Omega} f g \, dx.$$

This inner product also induces the following norm on $L^2(\Omega)$:

$$||f||_{L^2(\Omega)} = \sqrt{\int_{\Omega} f^2 dx}.$$

