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Field

We define a field F as a set together with two operations, usually called
addition and multiplication, and denoted by + and -, respectively, such that the
following axioms hold.

@ Closure of F under addition and multiplication: a +b € F, and a-b € F for
all a,b €F.

@ Associativity of addition and multiplication: a + (b + ¢) = (a + b) + ¢, and
a-(b-c)=(a-b)-cforall ab,cel.

© Commutativity of addition and multiplication: a +b =0+ a, and
a-b=>b-aforalla,bel.

@ Existence of additive and multiplicative identity elements: There exists
some element in F and denoted by 0, such that for all a € F, a + 0 = a.
Similarly, there is some element in F and denoted by 1, such that for all
aclF, a-1=a.

@ Existence of additive inverses and multiplicative inverses: For every a € F,
there exists an element —a € F, such that a + (—a) = 0. Likewise, for any
a € F other than 0, there exists an element ¢~ € F, such that a-a~! = 1.

@ Distributivity of multiplication over addition: a- (b+c¢) = (a-b) + (a &
for all a,b,c € F. ; ,




Vector Space

A vector space over a field I is a set V together with two operations
vector addition, denoted v +w € V for v,w € V and scalar
multiplication, denoted av € V for a € F and v € V, such that the
following assumptions are satisfied:

Quvtw=w+0v, v,wel.

Qu+t(vtw)=(ut+v)+w, uv,we.

© There exists an element 0 € V, called the zero vector, such that
v+0=wv, ve.

There exists an element © € V, called the additive inverse of v, such
thatv+0=0,v € V.

a(bv) = (ab)v, a,b € Fand v € V.

a(v+w)=av+aw, a € Fand v,w € V.

(a+b)v=av+bv, a,b€Fandve.

There exists a multiplicative identity 1 € F such that lv = v, v € V.
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Vector Space

The elements of a vector space are called vectors. A subset S of a vector
space V is a subspace of V if it is a vector space with respect to the
vector space operations on V. A subspace which is a proper subset of the
whole space is called a proper subspace.

If v1,v9,...,v, are some elements of a vector space V, by a linear
combination of vy, ..., v, we mean an element in )V of the form
aiv1 + -+ apvy, with a; € Fi=1,...,n.

Let S be a subset of V. The set of all linear combinations of elements of
S is called the span of S and is denoted by span S. If
S = {v1,v2,...,v,}, then we often write S = {v;}I" ;.

A subset S = {v;}; of V is said to be linearly independent if and only if

01U1+"'+anvn:0’ — CLZ'ZO,?::17...,7’L.

A subset is said to be linearly dependent if it is not linearly independent.




A Basis of a Vector Space

S is said to be a basis of V if it is linearly independent and span S = V.
The dimension of a finite dimensional vector space V is the number of
elements in a basis for V. The number of elements in a set is termed the
cardinality of the set.

Let {v;}!"_, be a basis for V. For v = ajv1 + -+, apvn, {a;}l are
called coordinates of v with respect to the basis V.

@ An example of a vector space is the Euclidean space R"™ over the
field of real or complex numbers.

@ Another example is the the space of polynomials of degree m € N
on R by

Pu(®) = {p: pla) = Y, 7 € R},
=0

This is a vector space over the field of real or complex numbers.




A Norm on a Vector Space

A norm || - || on a vector space V is a function from V to R such that for
every v,w € V and a € F the following three properties are fulfilled

Q ||v|| >0, and |[v]| =0 <= v =0.

Q |lav] = |alflv].

O [[v+w| < [[v] + [lwll.
A vector space V together with a norm is called a normed vector space or

simply a normed space. An inner product space V is also a normed space.

The Euclidean space R" is a normed space, where the norm of a vector
x = (z1,...,2,) € R" is given by

1
n 2
Il = (zx%) |
=1




Inner Product on a Vector Space

An inner product on a vector space V is a map from V to F which satisfies the
following assumptions

Q (v,v) >0, veV, and (v,v) =0<= v =0.
Q (vtw,z)=(v,2)+ (w,z), v,w,z€eV.
Q (v,az) =a(v,z), v,z€V and a €F.
Q (v,uw) = (w,0), v,w e V.
A vector space V together with an inner product (-, -) is called an inner product
space.

Two vectors v and w in an inner product space are said to be orthogonal if
(v,w) = 0. Two vectors v and w are said to be orthonormal if they are
orthogonal and ||v|| = ||w|| = 1. The Euclidean space R" is an inner product
space with inner product defined by (x,y) = > | z;y; with x = (21,...,2,)
andy = (y1,...,Yn). The norm x| is induced by the inner product

x| = (x, %)%,
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Function Space of Continuous Functions

Let Z be the set of non-negative integers, and d € {1,2,3}. In the
following € is an open subset of R? with piecewise smooth boundary.

© The short-hand notation for the mixed partial derivative of a
function can be written in terms of the so-called multi-index
notation «, which is an d-tuple of non-negative integers o; so that
a:= (a1, - ,aq). The length of « is given by |a| := Zle a;. We
use 0 = (0,---,0).

@ C*(Q) denotes the set of all continuous real-valued functions on §
such that D®u is also continuous on ) for all

a=(ar, - ,aq) with |ao| <k, keZ;.

© For a function ¢ € Clol(Q ), D¢ will denote the usual point-wise
a1 Qg
mixed partial derivative (%) ((%d) 10}




Function Space

Suppose that © C R®. Then for a function u € C3(Q) we have

Z Doy — O3u L O 83u O3u n O3u . O3u n O3u
e C0xd ' 0u 8303 0x20xy 022013 011023
Pu O3u O3u Pu

+8x18x§ + O0x30x3 + Ox9013 + 011022013

If 2 is a bounded open set, C*({2) denotes the set of all u e C*(Q) such
that D%u can be extended to a continuous function on ), the closure of

Q, for all
a=(a, - ,aq) with |of <k.

We can use the following norm for functions in C*(Q) :

luller@ = Y sup| D u()|.

It is standard to write C'(Q) for C°(2) when k = 0.



Function Space: Example

Let w : R — R be defined by

S
w(®) = e -I1TI* 0 if x| <1
0, otherwise;

where ||| = \/Zzﬂ 7. Note that the support of a continuous function
defined on an open set Q C R? is the closure in Q of the set

{x € Q:u(x) #0}

denoted by suppu. If suppu is a bounded subset of €2, u is said to be
compactly supported in Q. A closed and bounded set K  R? is
compact. In the previous example the support of w is compact with

suppw = {x € R : |lz| < 1}.

Let CE(€) be the set of all u € C*(Q) such that suppu is a bounded
subset of {2. We often use the notation

Co() = [) Co(9).
k=0




Weak Derivative

The set of functions which are differentiable infinitely many times is
denoted by C*>°(92) and the set L} (£2) of locally integrable functions is
defined by

Ll.() := {u| u € L' (K), compact K C Q}.
The definition of the weak derivative is given in terms of the set of
functions D(Q2) with D(2) := {u € C*>°(Q2) : suppu is compact}. A

function f € L}, .(Q) has a weak derivative D% f if there exists a function
g € L}, .(Q) such that

/g( Vo(x) da = ( 'a/f \D2o(x) dz, ¢ € D(Q).
Q

If such a g exists, we define D, f := ¢g. From now on, we will merely use
D“¢ instead of DS ¢ to denote the weak derivative of ¢.

Ni &L"é




Weak Derivative: Example

Consider the function u(z) = (1 — |x|)+, where

() = {o, if <0

z, else.

This function is not differentiable at the points 0 and +1. However, we can compute a
weak derivative of u. For v € D(R)

/Ru(m)v'(x)dx - /i(l—|x|)v'(:c)d:c
_ /j(l-&-x)v'(x)dx—l—/ol(l—x)v'(x)dx
_ /j(—l)v(x)dx—l—/(;1(+1)v($)dm=—/Rg(a:)v(:c)d:c,
where

0, ifz<-—1
1, ifxz e (-1,0)
-1, ifze(0,1)
0, ifz>1.

Hence g = Du.



Normed and Inner Product Spaces

The function space C*(9) equipped with the the following norm
lullex @) = sup > [D*u(w)]
TeQ
|or| <k
is an example of normed space. We can measure the distance between two
functions u and v of C*(2) by using the above norm.

Let H be a normed space equipped with the norm || - ||z. A sequence {z,} in a
normed space H converges to an element z € H if lim,,—, o ||z — x|z — 0.
We write x,, — . This is convergence in the norm.

If a function space H is equipped with an inner product (-, ), it is called an
inner product space. For example, the set of square integrable functions L?(2)
is an inner product space. The inner product for two functions f and g of
L2(Q) is defined as

U 9 e = /Q fgda.

This inner product also induces the following norm on L?(Q):

1z = / £ d.




	Elementary Definitions

