
Finite Element Method: Background Materials

Bishnu P. Lamichhane,
bishnu.lamichhane@newcastle.edu.au

School of Mathematical and Physical Sciences, Faculty of Science, University of
Newcastle, Australia

July 5, 2019



Field

We define a field F as a set together with two operations, usually called
addition and multiplication, and denoted by + and ·, respectively, such that the
following axioms hold.

1 Closure of F under addition and multiplication: a+ b ∈ F, and a · b ∈ F for
all a, b ∈ F.

2 Associativity of addition and multiplication: a+ (b+ c) = (a+ b) + c, and
a · (b · c) = (a · b) · c for all a, b, c ∈ F.

3 Commutativity of addition and multiplication: a+ b = b+ a, and
a · b = b · a for all a, b ∈ F.

4 Existence of additive and multiplicative identity elements: There exists
some element in F and denoted by 0, such that for all a ∈ F, a+ 0 = a.
Similarly, there is some element in F and denoted by 1, such that for all
a ∈ F, a · 1 = a.

5 Existence of additive inverses and multiplicative inverses: For every a ∈ F,
there exists an element −a ∈ F, such that a+ (−a) = 0. Likewise, for any
a ∈ F other than 0, there exists an element a−1 ∈ F, such that a · a−1 = 1.

6 Distributivity of multiplication over addition: a · (b+ c) = (a · b) + (a · c)
for all a, b, c ∈ F.



Vector Space

A vector space over a field F is a set V together with two operations
vector addition, denoted v + w ∈ V for v, w ∈ V and scalar
multiplication, denoted av ∈ V for a ∈ F and v ∈ V, such that the
following assumptions are satisfied:

1 v + w = w + v, v, w ∈ V.

2 u+ (v + w) = (u+ v) + w, u, v, w ∈ V.

3 There exists an element 0 ∈ V, called the zero vector, such that
v + 0 = v, v ∈ V.

4 There exists an element ṽ ∈ V, called the additive inverse of v, such
that v + ṽ = 0, v ∈ V.

5 a(bv) = (ab)v, a, b ∈ F and v ∈ V.

6 a(v + w) = av + aw, a ∈ F and v, w ∈ V.

7 (a+ b)v = av + bv, a, b ∈ F and v ∈ V.

8 There exists a multiplicative identity 1 ∈ F such that 1v = v, v ∈ V.



Vector Space

The elements of a vector space are called vectors. A subset S of a vector
space V is a subspace of V if it is a vector space with respect to the
vector space operations on V. A subspace which is a proper subset of the
whole space is called a proper subspace.

If v1, v2, . . . , vn are some elements of a vector space V, by a linear
combination of v1, . . . , vn we mean an element in V of the form
a1v1 + · · ·+ anvn, with ai ∈ F, i = 1, . . . , n.

Let S be a subset of V. The set of all linear combinations of elements of
S is called the span of S and is denoted by spanS. If
S = {v1, v2, . . . , vn}, then we often write S = {vi}ni=1.

A subset S = {vi}ni=1 of V is said to be linearly independent if and only if

a1v1 + · · ·+ anvn = 0, =⇒ ai = 0, i = 1, . . . , n.

A subset is said to be linearly dependent if it is not linearly independent.



A Basis of a Vector Space

S is said to be a basis of V if it is linearly independent and spanS = V.
The dimension of a finite dimensional vector space V is the number of
elements in a basis for V. The number of elements in a set is termed the
cardinality of the set.

Let {vi}ni=1 be a basis for V. For v = a1v1 + · · · , anvn, {ai}ni=1 are
called coordinates of v with respect to the basis V.

An example of a vector space is the Euclidean space Rn over the
field of real or complex numbers.

Another example is the the space of polynomials of degree m ∈ N
on R by

Pm(R) =
{
p : p(x) =

m∑
i=0

aix
i, x ∈ R

}
.

This is a vector space over the field of real or complex numbers.



A Norm on a Vector Space

A norm ‖ · ‖ on a vector space V is a function from V to R such that for
every v, w ∈ V and a ∈ F the following three properties are fulfilled

1 ‖v‖ ≥ 0, and ‖v‖ = 0⇐⇒ v = 0.

2 ‖av‖ = |a|‖v‖.
3 ‖v + w‖ ≤ ‖v‖+ ‖w‖.

A vector space V together with a norm is called a normed vector space or
simply a normed space. An inner product space V is also a normed space.

The Euclidean space Rn is a normed space, where the norm of a vector
x = (x1, . . . , xn) ∈ Rn is given by

‖x‖ =

(
n∑
i=1

x2
i

) 1
2

.



Inner Product on a Vector Space

An inner product on a vector space V is a map from V to F which satisfies the
following assumptions

1 〈v, v〉 ≥ 0, v ∈ V, and 〈v, v〉 = 0⇐⇒ v = 0.

2 〈v + w, z〉 = 〈v, z〉+ 〈w, z〉, v, w, z ∈ V.
3 〈v, az〉 = a〈v, z〉, v, z ∈ V and a ∈ F.

4 〈v, w〉 = 〈w, v〉, v, w ∈ V.

A vector space V together with an inner product 〈·, ·〉 is called an inner product
space.

Two vectors v and w in an inner product space are said to be orthogonal if
〈v, w〉 = 0. Two vectors v and w are said to be orthonormal if they are
orthogonal and ||v|| = ||w|| = 1. The Euclidean space Rn is an inner product
space with inner product defined by 〈x,y〉 =

∑n
i=1 xiyi with x = (x1, . . . , xn)

and y = (y1, . . . , yn). The norm ‖x‖ is induced by the inner product

‖x‖ = 〈x,x〉 12 .



Function Space of Continuous Functions

Let Z+ be the set of non-negative integers, and d ∈ {1, 2, 3}. In the
following Ω is an open subset of Rd with piecewise smooth boundary.

1 The short-hand notation for the mixed partial derivative of a
function can be written in terms of the so-called multi-index
notation α, which is an d-tuple of non-negative integers αi so that
α := (α1, · · · , αd). The length of α is given by |α| :=

∑d
i=1 αi. We

use 0 = (0, · · · , 0).

2 Ck(Ω) denotes the set of all continuous real-valued functions on Ω
such that Dαu is also continuous on Ω for all

α = (α1, · · · , αd) with |α| ≤ k, k ∈ Z+.

3 For a function φ ∈ C |α|(Ω), Dαφ will denote the usual point-wise

mixed partial derivative
(

∂
∂x1

)α1

· · ·
(

∂
∂xd

)αd

φ.



Function Space

Suppose that Ω ⊂ R3. Then for a function u ∈ C3(Ω) we have∑
|α|=3

Dαu =
∂3u

∂x3
1

+
∂3u

∂x3
2

+
∂3u

∂x3
3

+
∂3u

∂x2
1∂x2

+
∂3u

∂x2
1∂x3

+
∂3u

∂x1∂x2
2

+
∂3u

∂x1∂x2
3

+
∂3u

∂x2
1∂x3

+
∂3u

∂x2∂x2
3

+
∂3u

∂x1∂x2∂x3
.

If Ω is a bounded open set, Ck(Ω̄) denotes the set of all u ∈ Ck(Ω) such
that Dαu can be extended to a continuous function on Ω̄, the closure of
Ω, for all

α = (α1, · · · , αd) with |α| ≤ k.

We can use the following norm for functions in Ck(Ω̄) :

‖u‖Ck(Ω̄) =
∑
|α|≤k

sup |Dαu(x)|.

It is standard to write C(Ω̄) for C0(Ω̄) when k = 0.



Function Space: Example

Let w : Rd → R be defined by

w(x) =

{
e
− 1

1−‖x‖2 , if |x| < 1

0, otherwise;

where ‖x‖ =
√∑d

k=1 x
2
k. Note that the support of a continuous function

defined on an open set Ω ⊂ Rd is the closure in Ω of the set

{x ∈ Ω : u(x) 6= 0}
denoted by suppu. If suppu is a bounded subset of Ω, u is said to be
compactly supported in Ω. A closed and bounded set K ⊂ Rd is
compact. In the previous example the support of w is compact with

suppw = {x ∈ Rd : ‖x‖ ≤ 1}.
Let Ck0 (Ω) be the set of all u ∈ Ck(Ω) such that suppu is a bounded
subset of Ω. We often use the notation

C∞0 (Ω) =

∞⋂
k=0

Ck0 (Ω).

The function w defined in the previous example is in C∞0 (Ω).



Weak Derivative

The set of functions which are differentiable infinitely many times is
denoted by C∞(Ω) and the set L1

loc(Ω) of locally integrable functions is
defined by

L1
loc(Ω) := {u| u ∈ L1(K), compact K ⊂ Ω}.

The definition of the weak derivative is given in terms of the set of
functions D(Ω) with D(Ω) := {u ∈ C∞(Ω) : suppu is compact}. A
function f ∈ L1

loc(Ω) has a weak derivative Dα
wf if there exists a function

g ∈ L1
loc(Ω) such that∫
Ω
g(x)φ(x) dx = (−1)|α|

∫
Ω
f(x)Dα

wφ(x) dx, φ ∈ D(Ω).

If such a g exists, we define Dα
wf := g. From now on, we will merely use

Dαφ instead of Dα
wφ to denote the weak derivative of φ.



Weak Derivative: Example

Consider the function u(x) = (1− |x|)+, where

(x)+ =

{
0, if x < 0

x, else.

This function is not differentiable at the points 0 and ±1. However, we can compute a
weak derivative of u. For v ∈ D(R)∫

R
u(x)v′(x) dx =

∫ 1

−1

(1− |x|)v′(x) dx

=

∫ 0

−1

(1 + x)v′(x) dx+

∫ 1

0

(1− x)v′(x) dx

=

∫ 0

−1

(−1)v(x) dx+

∫ 1

0

(+1)v(x) dx = −
∫
R
g(x)v(x) dx,

where

g(x) =


0, if x < −1
1, if x ∈ (−1, 0)
−1, if x ∈ (0, 1)

0, if x > 1.

Hence g = Du.



Normed and Inner Product Spaces

The function space Ck(Ω) equipped with the the following norm

‖u‖Ck(Ω) = sup
x∈Ω

∑
|α|≤k

|Dαu(x)|

is an example of normed space. We can measure the distance between two
functions u and v of Ck(Ω) by using the above norm.

Let H be a normed space equipped with the norm ‖ · ‖H . A sequence {xn} in a
normed space H converges to an element x ∈ H if limn→∞ ‖xn − x‖H → 0.
We write xn → x. This is convergence in the norm.

If a function space H is equipped with an inner product 〈·, ·〉H , it is called an
inner product space. For example, the set of square integrable functions L2(Ω)
is an inner product space. The inner product for two functions f and g of
L2(Ω) is defined as

〈f, g〉L2(Ω) =

∫
Ω

fg dx.

This inner product also induces the following norm on L2(Ω):

‖f‖L2(Ω) =

√∫
Ω

f2 dx.
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