Problems
Problem 1. Let f(z,y) = ye®. Find the Taylor Expansion at (0,0) up to the second order.
Problem 2. Find z(¢) that satisfies the following differential equation.

CC% — sin(t)y(t) and y(0) = 1

Problem 3. Consider three data points (z1,y1), (x2,%2), and (x3,%3) on plane R?. Find
«, 8 € R minimising

3
> la+ Bz — uil®
i=1

Problem 4. Let X and Y be a random variable. Assume that X is G-measurable for some
sigma algebra G. Show that
E[XY|G] = XE[Y|]]

Problem 5. Assume that X and Y are independent standard normal random variables.
Then show that X + 2Y is a normal random variable. Find its mean and variance.

Problem 6. Write a Python code that uses the gradient descent method to (numerically)
find the minimum of the function

fz,y) == 2%+ 4o —y 4 1Y,
Solutions

Solution to Problem 1.
af of 1 (82 f 0% f

82
? / (0,0>:cy+ay2(0,0)y2>

(0,0)x* + 920y

flz,y) = %(0,0)x—i— @(O’O)y+ 5 (72

1
=y + 5y + 0|z, y|*)

Solution to Problem 2.
dy .
— =sin(¢t)dt
y (t)
y(t) _ CefOf sin(u)du

By our initial condition, C = 1 and y(¢) = elo sin(uw)du,

Solution to Problem 3. Let f(a,) = 3.7, |a + Sz; — y;|. To find the minimising («, 3),
let us differentiate.

g£—2§;m+ﬂm—y0—0

ggﬁi(amxim:o
Then,

(2 B0 ()

Y yxi)\B > Ty
Therefore,

()= (5 &) (5)

Solution to Problem 4. It is clear that the right-hand side is G measurable by the
definition of conditional expectation E[Y|G]. Therefore, we only need to show, for any
G-measurable random variable V', we have

E[VXY] = E[VXE[Y|G]].

Since X is G-measurable, we know V' X is also G-measurable. By the definition of E[Y|G],
we have
E[VXE[Y|G]] = E[VXY].

Therefore, the claim is proven.
Solution to Problem 5. The moment generating function is

EeT(X+2Y) —]Ee’r'X]Ee(QT)Y

Therefore, X + 2Y is a normal random variable with mean zero and variance 5.

Solution to Problem 5.

import numpy as np

def f(x, y):

mmn

The function to minimize.
f(x, yv) = x"2 + 4x — y + e~ (x+y)

mmn

return xx*2 + 4xx — y + np.exp (xty)

2

def grad_f(x, y):
The gradient of the function f(x, y).
Returns a numpy array [df/dx, df/dy].

mmrn

df_dx = 2%x + 4 + np.exp (xt+y)
df_dy = -1 + np.exp (x+y)
return np.array ([df_dx, df_dy])

def gradient_descent (starting point, learning_rate, n_iterations):

mmn

Performs gradient descent to find the minimum of the function.

Args:
starting point: A numpy array [x, y] for the starting point.
learning rate: The learning rate for gradient descent.
n_iterations: The number of iterations to perform.

Returns:
The point [x, y] that minimizes the function.
mon
point = starting_point
for i in range(n_iterations):
grad = grad_f (point[0], point[1])
point = point - learning_rate x grad
return point

—-—-— Hyperparameters —-—-—
starting_point = np.array([0.0, 0.07)
learning_rate = 0.01

n_iterations = 1000

——— Run Gradient Descent ——-—

minimum_point = gradient_descent (starting _point, learning_rate, n_iterations)
minimum_value = f (minimum_point[0], minimum_point[1])

——— Print Results ——-—

print (£"The minimum is at approximately: ({minimum_point[0]:.4f}, {minimum_point [:

print (f"The minimum value of the function is approximately: {minimum_value:.4f}")

