
Problems

Problem 1. Let f(x, y) = yex. Find the Taylor Expansion at (0, 0) up to the second order.

Problem 2. Find x(t) that satisfies the following differential equation.

dy

dt
= sin(t)y(t) and y(0) = 1

Problem 3. Consider three data points (x1, y1), (x2, y2), and (x3, y3) on plane R2. Find
α, β ∈ R minimising

3∑
i=1

|α+ βxi − yi|2

Problem 4. Let X and Y be a random variable. Assume that X is G-measurable for some
sigma algebra G. Show that

E[XY |G] = XE[Y |G]

Problem 5. Assume that X and Y are independent standard normal random variables.
Then show that X + 2Y is a normal random variable. Find its mean and variance.

Problem 6. Write a Python code that uses the gradient descent method to (numerically)
find the minimum of the function

f(x, y) := x2 + 4x− y + ex+y.

Solutions

Solution to Problem 1.

f(x, y) =
∂f

∂x
(0, 0)x+

∂f

∂y
(0, 0)y +

1

2

(
∂2f

∂x2
(0, 0)x2 +

∂2f

∂x∂y
(0, 0)xy +

∂2f

∂y2
(0, 0)y2

)
= y +

1

2
xy +O(|x, y|3)

Solution to Problem 2.

dy

y
= sin(t)dt

y(t) = Ce
∫ t
0 sin(u)du

By our initial condition, C = 1 and y(t) = e
∫ t
0 sin(u)du.
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Solution to Problem 3. Let f(α, β) =
∑3

i=1 |α+ βxi − yi|2. To find the minimising (α, β),
let us differentiate.

∂f

∂α
= 2

3∑
i=1

(α+ βxi − yi) = 0

∂f

∂β
= 2

3∑
i=1

(α+ βxi − yi)xi = 0

Then, (
3

∑
xi∑

xi
∑

x2i

)(
α
β

)
=

( ∑
yi∑
xiyi

)
Therefore, (

α
β

)
=

(
3

∑
xi∑

xi
∑

x2i

)−1( ∑
yi∑
xiyi

)

Solution to Problem 4. It is clear that the right-hand side is G measurable by the
definition of conditional expectation E[Y |G]. Therefore, we only need to show, for any
G-measurable random variable V , we have

E[V XY ] = E[V XE[Y |G]].

Since X is G-measurable, we know V X is also G-measurable. By the definition of E[Y |G],
we have

E[V XE[Y |G]] = E[V XY ].

Therefore, the claim is proven.

Solution to Problem 5. The moment generating function is

Eer(X+2Y ) = EerXEe(2r)Y

= e
1
2
r2e

1
2
(2r)2 = e

1
2
5r2

Therefore, X + 2Y is a normal random variable with mean zero and variance 5.

Solution to Problem 5.

import numpy as np

def f(x, y):
"""
The function to minimize.
f(x, y) = xˆ2 + 4x - y + eˆ(x+y)
"""
return x**2 + 4*x - y + np.exp(x+y)
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def grad_f(x, y):
"""
The gradient of the function f(x, y).
Returns a numpy array [df/dx, df/dy].
"""
df_dx = 2*x + 4 + np.exp(x+y)
df_dy = -1 + np.exp(x+y)
return np.array([df_dx, df_dy])

def gradient_descent(starting_point, learning_rate, n_iterations):
"""
Performs gradient descent to find the minimum of the function.

Args:
starting_point: A numpy array [x, y] for the starting point.
learning_rate: The learning rate for gradient descent.
n_iterations: The number of iterations to perform.

Returns:
The point [x, y] that minimizes the function.

"""
point = starting_point
for i in range(n_iterations):
grad = grad_f(point[0], point[1])
point = point - learning_rate * grad

return point

# --- Hyperparameters ---
starting_point = np.array([0.0, 0.0])
learning_rate = 0.01
n_iterations = 1000

# --- Run Gradient Descent ---
minimum_point = gradient_descent(starting_point, learning_rate, n_iterations)
minimum_value = f(minimum_point[0], minimum_point[1])

# --- Print Results ---
print(f"The minimum is at approximately: ({minimum_point[0]:.4f}, {minimum_point[1]:.4f})")
print(f"The minimum value of the function is approximately: {minimum_value:.4f}")
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