Warm-up questions

Problem 1. Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded domain and let ν be the outward unit-vector normal to the boundary $\partial\Omega$. Suppose that u and v are two functions in $C^2(\bar{\Omega})$ (that is, u and v have continuous second-order partial derivatives on $\Omega \cup \partial\Omega$).

1. Prove Green's first identity:

$$\int_{\Omega} v \Delta u \, dx + \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\partial \Omega} v \, \partial_{\nu} u \, dS.$$

In this expression, $\nabla u = (\partial_{x^1} u, \dots, \partial_{x^n} u)$ is the **gradient**, $\Delta u = \sum_{i=1}^n \partial_{x^i x^j}^2 u$ is the **Laplacian operator**, and $\partial_{\nu} u = \nu \cdot \nabla u$ is the directional derivative in the direction of ν . Hint: $\Delta = \operatorname{div} \nabla$, where for a vector-field $F = (F_1, \dots, F_2)$, the **divergence operator** is $\operatorname{div} F = \sum_{i=1}^n \partial_{x^j} F_j$. Use the divergence theorem.

2. Prove Green's second identity:

$$\int_{\Omega} v \Delta u \, dx - \int_{\Omega} u \Delta v \, dx = \int_{\partial \Omega} \left(v \, \partial_{\nu} u - u \, \partial_{\nu} v \right) dS \, .$$

Problem 2. Let $B_r(x)$ be the open ball in \mathbb{R}^n of center x and radius r. Let u be continuous on $B_1(x)$. Prove that

$$\lim_{r \to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} u(y) dy = u(x) ,$$

where $|B_r(x)| = \int_{B_r(x)} dy$ denotes the volume of the ball.

Problem 3. Let $I \subset \mathbb{R}$ be an interval and let $f \in C^0(\bar{I})$. For $\alpha \geq 0$, define

$$[f]_{C^{0,\alpha}(\bar{I})} := \sup_{x,y\in\bar{I}; x\neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}.$$

If this quantity is finite, we say that f is **Hölder continuous of order** α . Suppose that f is differentiable on I and Hölder continuous of order $\alpha > 1$. Prove that f must be constant. *Hint: Mean value theorem*.

Problem 4.

1. Let $p \in (1, \infty)$, $a \ge 0$, and $b \ge 0$ be three real numbers. Prove that

$$a^{1/p}b^{1-1/p} \leq a/p + (1-1/p)b$$
.

Hint: Apply logarithm to both sides. Use the fact that log is concave.

2. Put q = 1 - 1/p. Use your answer to the previous question to show that if $A \ge 0$ and $B \ge 0$, then **Young's inequality** holds:

$$AB \leq \frac{A^p}{p} + \frac{B^q}{q} .$$

Hint: Put $A = a^{1/p}$. Choose B suitably.

Problem 5. Let $\Omega \subset \mathbb{R}^n$ be a domain. Suppose that the function $u \in C^2(\Omega)$ is **harmonic**:

$$\Delta u = 0$$
 on Ω .

Let $B_R(y) \subset\subset \Omega$ (which means that the ball is **compactly contained** in Ω , that is $\overline{B_R(y)} \subset \Omega$.).

1. Let $\rho \in (0, R)$. Prove

$$\int_{B_{\varrho}(y)} \partial_{\nu} u \, dS = 0.$$

2. Introduce radial/angular coordinates (r, ω) on $B_R(y)$ such that r = |x - y| and $\omega = (x - y)/r$. Write $u(x) = u(y + r\omega)$. Using 1., obtain the following steps:

$$0 = \int_{\partial B_{\rho}(y)} \frac{\partial u}{\partial r} (y + \rho \omega) dS = \rho^{n-1} \int_{|\omega|=1} \frac{\partial u}{\partial r} (y + \rho \omega) d\omega = \rho^{n-1} \frac{\partial}{\partial \rho} \int_{|\omega|=1} u (y + \rho \omega) d\omega$$
$$= \rho^{n-1} \frac{\partial}{\partial \rho} \left(\rho^{1-n} \int_{\partial B_{\rho}(y)} u \, dS \right).$$

3. Deduce from the previous question that

$$\rho^{1-n} \int_{\partial B_{\rho}(y)} u \, dS = R^{1-n} \int_{\partial B_{R}(y)} u \, dS \qquad \forall \ \rho \in (0, R) \, .$$

4. Use Problem 2. to deduce that

$$u(y) = \frac{1}{|\partial B_R(y)|} \int_{\partial B_R(y)} u \, dS \qquad \forall \ \rho \in (0, R) \,.$$

This is called **mean value property for harmonic functions.** It is a fundamental fact; you should halt and spend a few minutes to appreciate it:). Hint: $|B_R(y)|/|B_\rho(y)| = (R/\rho)^{n-1}$.

- 5. Prove that $\Delta u^2 \geq 0$. We say that u^2 is **subharmonic**.
- 6. State and prove an analogue of the mean value property for subharmonic functions.

Solutions

Problem 1.

1. This is a task for the **divergence theorem**:

$$\int_{\Omega} div \, F \, dx = \int_{\partial \Omega} \nu \cdot F \, dS \quad \text{for all vector-fields } F.$$

Now choose $F = u\nabla v$. Note that

$$\operatorname{div} F = \sum_{j=1}^{n} \partial_{x^{j}} (u \partial_{x^{j}} v) = \sum_{j=1}^{n} \partial_{x^{j}} u \partial_{x^{j}} v + \sum_{j=1}^{n} (\partial_{x^{j} x^{j}}^{2} u) v = \nabla u \cdot \nabla v + v \Delta u.$$

Integrating both sides using the divergence theorem yields the desired identity:

$$\int_{\Omega} v \Delta u \, dx + \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\partial \Omega} v \, \partial_{\nu} u \, dS \, .$$

2. Exchanging the roles of u and v brings

$$\int_{\Omega} u \Delta v \, dx + \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\partial \Omega} u \, \partial_{\nu} v \, dS \, .$$

The difference between these last two expressions is Green's second identity.

Problem 2. We first write

$$\frac{1}{|B_r(x)|} \int_{B_r(x)} u(y) dy - u(x) = \frac{1}{|B_r(x)|} \int_{B_r(x)} u(y) dy - \frac{u(x)}{|B_r(x)|} \int_{B_r(x)} dy$$

$$= \frac{1}{|B_r(x)|} \int_{B_r(x)} \left(u(y) - u(x) \right) dy.$$

Let $\epsilon > 0$. Since u is continuous at x by hypothesis, we find r > 0 such that

$$|u(x) - u(y)| < \epsilon \quad \forall |x - y| < r.$$

In other symbols

$$|u(x) - u(y)| < \epsilon \quad \forall y \in B_r(x).$$

Putting this into the above integral expression yields

$$\left| \frac{1}{|B_r(x)|} \int_{B_r(x)} u(y) dy - u(x) \right| \leq \frac{1}{|B_r(x)|} \int_{B_r(x)} \left| u(y) - u(x) \right| dy$$

$$< \frac{\epsilon}{|B_r(x)|} \int_{B_r(x)} u(y) dy = \epsilon.$$

Letting ϵ tend to 0 implies the desired identity.

Problem 3. Let $x \neq y$ be two points in I. Since f is differentiable, by the mean value theorem, there exists $z \in (x, y)$ such that

$$f'(z) = \frac{f(x) - f(y)}{x - y}.$$

Since f is α -H older continuous, we have

$$|f'(z)| \le \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} |x - y|^{\alpha - 1} \le [f]_{C^{0,\alpha}(\bar{I})} |x - y|^{\alpha - 1}.$$

Since $\alpha > 1$, we can make the right-hand side as small as we please by choosing x and y close to each other. Hence f'(z) can be made arbitrarily small and therefore f must be a constant function (vanishing derivative).

Problem 4.

1. For notational convenience, let t = 1/p, so we have to show

$$a^t b^{1-t} \le ta + (1-t)b.$$

This obviously satisfied when either a = 0 or b = 0. So without loss of generality, let a > 0 and b > 0 so that $\log(a)$ and $\log(b)$ are well-defined. Apply logarithm to both sides of the sought inequality to find that we need to show

$$t\log(a) + (1-t)\log(b) \leq \log(ta + (1-t)b).$$

This is the condition for the logarithm function to be **concave**. Another characterisation of concavity for twice-differentiable functions is $f'' \ge 0$. This condition is easily verified for the logarithm.

2. Put $A = a^{1/p}$ and $B = b^{1/q}$ to immediately arrive at

$$AB \leq \frac{A^p}{p} + \frac{B^q}{q}$$
.

Problem 5.

1. This is immediate again by the divergence theorem and the harmonicity of u:

$$0 = \int_{B_{\rho}(y)} \Delta u \, dx = \int_{\partial B_{\rho}(y)} \partial_{\nu} u \, dS \,. \tag{1}$$

2. Perhaps we should review some basic higher dimensional spherical coordinates. Recall that in polar coordinates (r,ω) on \mathbb{R}^2 , the area element is $dx^1dx^2 = rdrd\omega$. In particular, on the boundary of a disk of radius ρ (i.e. a circle of radius ρ), we find $dS = \rho d\omega$. In spherical coordinates (r,θ,ϕ) on \mathbb{R}^3 , the volume element is $dx^1dx^2dx^3 = r^2\sin\theta drd\theta d\phi$. On the boundary of a ball of radius ρ (that is on a sphere of radius ρ), we find $dS = \rho^2\sin\theta d\theta d\phi$. We may render this as $dS = \rho^2 d\omega$ with $d\omega = \sin\theta d\theta d\phi$ representing the area element on the unit-sphere $\{|\omega| = 1\}$ in \mathbb{R}^3 . This pattern continues in higher dimension. For example, on \mathbb{R}^n , the integration element on ∂B_ρ takes the form $dS = \rho^{n-1}d\omega$, where $d\omega$ represents the integration element on $\{|\omega| = 1\}$ in \mathbb{R}^n . Accordingly, we can recast (3) as

$$0 = \rho^{n-1} \int_{|\omega|=1} (\partial_r u)(y + \rho \omega) d\omega.$$
 (2)

We have used the fact that on the boundary $|\omega| = 1$, the outward unit normal points in the radial direction (straight out of the ball), Since r and ω are independent variables, we are free to move ∂_r outside of the integral sign. This implies now

$$0 = \rho^{n-1} \partial_{\rho} \int_{|\omega|=1} u(y + \rho \omega) d\omega.$$

Switching back to the area element dS yields finally

$$0 = \rho^{n-1} \partial_{\rho} \left(\rho^{1-n} \int_{\partial B_{\rho}(y)} u(x) \, dS \right).$$

3. The previous question shows that the following quantity has zero derivative and must be constant:

$$\rho^{1-n} \int_{\partial B_{\rho}(y)} u(x) dS \qquad \forall \ \rho \in (0, R).$$

Letting ρ tend to 0 and to R, we reach the identity

$$\lim_{\rho \to 0} \rho^{1-n} \int_{\partial B_{\rho}(y)} u(x) dS = R^{1-n} \int_{\partial B_{R}(y)} u(x) dS.$$

Next we use the given hint¹ to recast this as

$$\lim_{\rho \to 0} \frac{1}{|\partial B_{\rho}(y)|} \int_{\partial B_{\rho}(y)} u(x) dS = \frac{1}{|\partial B_{R}(y)|} \int_{\partial B_{R}(y)} u(x) dS.$$

Finally, calling upon Problem 2, we arrive at the mean value property for harmonic functions:

$$u(y) = \frac{1}{|\partial B_R(y)|} \int_{\partial B_R(y)} u(x) dS.$$

4. In the case of a subharmonic function, equation (3) becomes an inequality:

$$0 \le \int_{\partial B_0(y)} \partial_{\nu} u \, dS \,. \tag{3}$$

Following mutatis mutandis the same line of reasoning as above, we arrive eventually at

$$0 \le \partial_{\rho} \left(\rho^{1-n} \int_{\partial B_{\rho}(y)} u(x) \, dS \right).$$

Hence

$$\rho^{1-n} \int_{\partial B_{\rho}(y)} u(x) \, dS$$

is now a non-decreasing function of ρ , and in particular

$$\lim_{\rho \to 0} \rho^{1-n} \int_{\partial B_{\rho}(y)} u(x) dS \leq R^{1-n} \int_{\partial B_{R}(y)} u(x) dS.$$

Proceeding as we did above, we arrive at the mean value property for subharmonic functions:

$$u(y) \leq \frac{1}{|\partial B_R(y)|} \int_{\partial B_R(y)} u(x) dS.$$

¹Prove the hint is true!