
Warm-up questions

Problem 1. Let Ω ⊂ Rn be a smooth bounded domain and let ν be the outward unit-vector normal to
the boundary ∂Ω. Suppose that u and v are two functions in C2(Ω̄) (that is, u and v have continuous
second-order partial derivatives on Ω ∪ ∂Ω).

1. Prove Green’s first identity:∫
Ω
v∆u dx+

∫
Ω
∇u · ∇v dx =

∫
∂Ω

v ∂νu dS .

In this expression, ∇u = (∂x1u, . . . , ∂xnu) is the gradient, ∆u =
∑n

i=1 ∂
2
xixju is the Laplacian

operator, and ∂νu = ν · ∇u is the directional derivative in the direction of ν. Hint: ∆ = div∇,
where for a vector-field F = (F1, . . . , F2), the divergence operator is div F =

∑n
i=1 ∂xjFj. Use the

divergence theorem.

2. Prove Green’s second identity:∫
Ω
v∆u dx−

∫
Ω
u∆v dx =

∫
∂Ω

(
v ∂νu− u ∂νv

)
dS .

Problem 2. Let Br(x) be the open ball in Rn of center x and radius r. Let u be continuous on B1(x).
Prove that

lim
r→0

1

|Br(x)|

∫
Br(x)

u(y)dy = u(x) ,

where |Br(x)| =
∫
Br(x)

dy denotes the volume of the ball.

Problem 3. Let I ⊂ R be an interval and let f ∈ C0(Ī). For α ≥ 0, define

[f ]C0,α(Ī) := sup
x,y∈Ī ;x̸=y

|f(x)− f(y)|
|x− y|α

.

If this quantity is finite, we say that f is Hölder continuous of order α. Suppose that f is differentiable
on I and Hölder continuous of order α > 1. Prove that f must be constant. Hint: Mean value theorem.

Problem 4.

1. Let p ∈ (1,∞), a ≥ 0, and b ≥ 0 be three real numbers. Prove that

a1/pb1−1/p ≤ a/p+ (1− 1/p)b .

Hint: Apply logarithm to both sides. Use the fact that log is concave.

2. Put q = 1 − 1/p. Use your answer to the previous question to show that if A ≥ 0 and B ≥ 0, then
Young’s inequality holds:

AB ≤ Ap

p
+

Bq

q
.

Hint: Put A = a1/p. Choose B suitably.

3



Problem 5. Let Ω ⊂ Rn be a domain. Suppose that the function u ∈ C2(Ω) is harmonic:

∆u = 0 on Ω.

Let BR(y) ⊂⊂ Ω (which means that the ball is compactly contained in Ω, that is BR(y) ⊂ Ω. ).

1. Let ρ ∈ (0, R). Prove ∫
Bρ(y)

∂νu dS = 0 .

2. Introduce radial/angular coordinates (r, ω) on BR(y) such that r = |x− y| and ω = (x− y)/r. Write
u(x) = u(y + rω). Using 1., obtain the following steps:

0 =

∫
∂Bρ(y)

∂u

∂r
(y + ρω) dS = ρn−1

∫
|ω|=1

∂u

∂r
(y + ρω) dω = ρn−1 ∂

∂ρ

∫
|ω|=1

u(y + ρω) dω

= ρn−1 ∂

∂ρ

(
ρ1−n

∫
∂Bρ(y)

u dS

)
.

3. Deduce from the previous question that

ρ1−n

∫
∂Bρ(y)

u dS = R1−n

∫
∂BR(y)

u dS ∀ ρ ∈ (0, R) .

4. Use Problem 2. to deduce that

u(y) =
1

|∂BR(y)|

∫
∂BR(y)

u dS ∀ ρ ∈ (0, R) .

This is called mean value property for harmonic functions. It is a fundamental fact; you should
halt and spend a few minutes to appreciate it :). Hint: |BR(y)|/|Bρ(y)| = (R/ρ)n−1.

5. Prove that ∆u2 ≥ 0. We say that u2 is subharmonic.

6. State and prove an analogue of the mean value property for subharmonic functions.
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Solutions

Problem 1.

1. This is a task for the divergence theorem:∫
Ω
div F dx =

∫
∂Ω

ν · F dS for all vector-fields F .

Now choose F = u∇v. Note that

div F =
n∑

j=1

∂xj (u∂xjv) =
n∑

j=1

∂xju∂xjv +
n∑

j=1

(∂2
xjxju)v = ∇u · ∇v + v∆u .

Integrating both sides using the divergence theorem yields the desired identity:∫
Ω
v∆u dx+

∫
Ω
∇u · ∇v dx =

∫
∂Ω

v ∂νu dS .

2. Exchanging the roles of u and v brings∫
Ω
u∆v dx+

∫
Ω
∇u · ∇v dx =

∫
∂Ω

u ∂νv dS .

The difference between these last two expressions is Green’s second identity.

Problem 2. We first write

1

|Br(x)|

∫
Br(x)

u(y)dy − u(x) =
1

|Br(x)|

∫
Br(x)

u(y)dy − u(x)

|Br(x)|

∫
Br(x)

dy

=
1

|Br(x)|

∫
Br(x)

(
u(y)− u(x)

)
dy .

Let ϵ > 0. Since u is continuous at x by hypothesis, we find r > 0 such that∣∣u(x)− u(y)
∣∣ < ϵ ∀ |x− y| < r .

In other symbols ∣∣u(x)− u(y)
∣∣ < ϵ ∀ y ∈ Br(x) .

Putting this into the above integral expression yields∣∣∣∣∣ 1

|Br(x)|

∫
Br(x)

u(y)dy − u(x)

∣∣∣∣∣ ≤ 1

|Br(x)|

∫
Br(x)

∣∣u(y)− u(x)
∣∣dy

<
ϵ

|Br(x)|

∫
Br(x)

u(y)dy = ϵ .

Letting ϵ tend to 0 implies the desired identity.
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Problem 3. Let x ̸= y be two points in I. Since f is differentiable, by the mean value theorem, there
exists z ∈ (x, y) such that

f ′(z) =
f(x)− f(y)

x− y
.

Since f is α-H older continuous, we have

|f ′(z)| ≤ |f(x)− f(y)|
|x− y|α

|x− y|α−1 ≤ [f ]C0,α(Ī)|x− y|α−1 .

Since α > 1, we can make the right-hand side as small as we please by choosing x and y close to each
other. Hence f ′(z) can be made arbitrarily small and therefore f must be a constant function (vanishing
derivative).

Problem 4.

1. For notational convenience, let t = 1/p, so we have to show

atb1−t ≤ ta+ (1− t)b .

This obviously satisfied when either a = 0 or b = 0. So without loss of generality, let a > 0 and b > 0
so that log(a) and log(b) are well-defined. Apply logarithm to both sides of the sought inequality to
find that we need to show

t log(a) + (1− t) log(b) ≤ log
(
ta+ (1− t)b

)
.

This is the condition for the logarithm function to be concave. Another characterisation of concavity
for twice-differentiable functions is f ′′ ≥ 0. This condition is easily verified for the logarithm.

2. Put A = a1/p and B = b1/q to immediately arrive at

AB ≤ Ap

p
+

Bq

q
.

Problem 5.

1. This is immediate again by the divergence theorem and the harmonicity of u:

0 =

∫
Bρ(y)

∆u dx =

∫
∂Bρ(y)

∂νu dS . (1)

2. Perhaps we should review some basic higher dimensional spherical coordinates. Recall that in polar
coordinates (r, ω) on R2, the area element is dx1dx2 = rdrdω. In particular, on the boundary of
a disk of radius ρ (i.e. a circle of radius ρ), we find dS = ρdω. In spherical coordinates (r, θ, ϕ)
on R3, the volume element is dx1dx2dx3 = r2 sin θdrdθdϕ. On the boundary of a ball of radius ρ
(that is on a sphere of radius ρ), we find dS = ρ2 sin θdθdϕ. We may render this as dS = ρ2dω
with dω = sin θdθdϕ representing the area element on the unit-sphere {|ω| = 1} in R3. This pattern
continues in higher dimension. For example, on Rn, the integration element on ∂Bρ takes the form
dS = ρn−1dω, where dω represents the integration element on {|ω| = 1} in Rn. Accordingly, we can
recast (3) as

0 = ρn−1

∫
|ω|=1

(∂ru)(y + ρω) dω . (2)
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We have used the fact that on the boundary |ω| = 1, the outward unit normal points in the radial
direction (straight out of the ball), Since r and ω are independent variables, we are free to move ∂r
outside of the integral sign. This implies now

0 = ρn−1∂ρ

∫
|ω|=1

u(y + ρω) dω .

Switching back to the area element dS yields finally

0 = ρn−1∂ρ

(
ρ1−n

∫
∂Bρ(y)

u(x) dS

)
.

3. The previous question shows that the following quantity has zero derivative and must be constant:

ρ1−n

∫
∂Bρ(y)

u(x) dS ∀ ρ ∈ (0, R) .

Letting ρ tend to 0 and to R, we reach the identity

lim
ρ→0

ρ1−n

∫
∂Bρ(y)

u(x) dS = R1−n

∫
∂BR(y)

u(x) dS .

Next we use the given hint1 to recast this as

lim
ρ→0

1

|∂Bρ(y)|

∫
∂Bρ(y)

u(x) dS =
1

|∂BR(y)|

∫
∂BR(y)

u(x) dS .

Finally, calling upon Problem 2, we arrive at the mean value property for harmonic functions:

u(y) =
1

|∂BR(y)|

∫
∂BR(y)

u(x) dS .

4. In the case of a subharmonic function, equation (3) becomes an inequality:

0 ≤
∫
∂Bρ(y)

∂νu dS . (3)

Following mutatis mutandis the same line of reasoning as above, we arrive eventually at

0 ≤ ∂ρ

(
ρ1−n

∫
∂Bρ(y)

u(x) dS

)
.

Hence

ρ1−n

∫
∂Bρ(y)

u(x) dS

is now a non-decreasing function of ρ, and in particular

lim
ρ→0

ρ1−n

∫
∂Bρ(y)

u(x) dS ≤ R1−n

∫
∂BR(y)

u(x) dS .

Proceeding as we did above, we arrive at the mean value property for subharmonic functions:

u(y) ≤ 1

|∂BR(y)|

∫
∂BR(y)

u(x) dS .

1Prove the hint is true!
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