Warm-up questions

Problem 1. Let 2 C R" be a smooth bounded domain and let v be the outward unit-vector normal to
the boundary 9. Suppose that u and v are two functions in C?(Q) (that is, u and v have continuous
second-order partial derivatives on QU 9Q).

1. Prove Green’s first identity:

/vAudx+/Vu-Vvd:c = / vo,udsS .
Q Q oN

In this expression, Vu = (9,1u,...,0znu) is the gradient, Au = > 7 | 3;@1“ is the Laplacian
operator, and d,u = v - Vu is the directional derivative in the direction of v. Hint: A = divV,
where for a vector-field F = (F1,...,F), the divergence operator is div F =Y "' | 0,; F;. Use the
divergence theorem.

2. Prove Green’s second identity:

/vAuda:—/uAvdw = / (U@Vu—ua,,v)ds.
Q Q o0

Problem 2. Let B,(x) be the open ball in R" of center x and radius 7. Let u be continuous on Bj(x).

Prove that 1

im —— u(y)dy = u(x),
M B @ o, WY T

where |B,.(z)| = [ (z) @y denotes the volume of the ball.

Problem 3. Let I C R be an interval and let f € C°(I). For a > 0, define

[f]CO,a(j) = sup M ]

zyel ; xy |"E7y|a

If this quantity is finite, we say that f is Holder continuous of order a. Suppose that f is differentiable
on I and Holder continuous of order o > 1. Prove that f must be constant. Hint: Mean value theorem.

Problem 4.
1. Let p € (1,00), a > 0, and b > 0 be three real numbers. Prove that
a/PotP < afp4 (1 -1/p)b.
Hint: Apply logarithm to both sides. Use the fact that log is concave.
2. Put ¢ =1 —1/p. Use your answer to the previous question to show that if A > 0 and B > 0, then

Young’s inequality holds:
AP BY
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AB < .
p q

Hint: Put A = a'/P. Choose B suitably.



Problem 5. Let Q C R" be a domain. Suppose that the function u € C?(Q) is harmonic:

Au = 0 on .

Let Br(y) CC Q (which means that the ball is compactly contained in Q, that is Br(y) C Q. ).

1. Let p € (0, R). Prove

/ dyudS = 0.
By (y)

2. Introduce radial/angular coordinates (r,w) on Br(y) such that r = |z —y| and w = (z — y)/r. Write
u(z) = u(y + rw). Using 1., obtain the following steps:

ou ou 0
0:/ +wdS:”‘1/ +wdw="_1/ u(y + pw) dw
0 gy Y+ ) p 1 5y W+ ) ARy (y + pw)

|wl=
= pn1§<p1n/ udS)
P 9By (y)

3. Deduce from the previous question that

pl—"/ uwdS = Rl—"/ udS YV pe(0,R).
0B, (y) O0BRr(y)

4. Use Problem 2. to deduce that
1

U = — udS Vpe(0,R).
(@) 10BRr(Y)| JoBg ) peO.R)

This is called mean value property for harmonic functions. It is a fundamental fact; you should
halt and spend a few minutes to appreciate it :). Hint: |Bgr(y)|/|B,(y)| = (R/p)" .

5. Prove that Au? > 0. We say that u? is subharmonic.

6. State and prove an analogue of the mean value property for subharmonic functions.



Solutions

Problem 1.

1. This is a task for the divergence theorem:
/ div Fdx = / v-FdS for all vector-fields F.
Q oN

Now choose F' = uVv. Note that

divF = Z 0y (U0, v) Z 0y 0,0 + Z i)V = Vu- Vv 4 vAu.

Integrating both sides using the divergence theorem yields the desired identity:

/vAudw+/Vu-Vvdx = / vo,udsS .
Q Q o0

2. Exchanging the roles of v and v brings

/uAvd:c+/Vu~Vvdx = / ud,vdS .
Q Q oN

The difference between these last two expressions is Green’s second identity.

Problem 2. We first write

(e = 1 u ~u(z)
B \/ vy =ule) = B Jp i "YW rBr<x>\/Br<x>dy

| JB.(
il
—u(z))dy .
B@) @)y
Let € > 0. Since u is continuous at x by hypothesis, we find » > 0 such that
lu(@) —u(y)] < e Vi|z—yl<r.

In other symbols
lu(z) —u(y)| < e Vyé€ B (x).
Putting this into the above integral expression yields

1
1B ()| JB, ()

1
<
= 1Br@)] Jp.w)
€
[Br(@)] Jp,(x)

u(y)dy — u(z) ‘u(y) — u(x)‘dy

u(y)dy = €.

Letting € tend to 0 implies the desired identity.



Problem 3. Let x # y be two points in I. Since f is differentiable, by the mean value theorem, there
exists z € (z,y) such that

z—-Y
Since f is a-H older continuous, we have
e < V=T -yt < (oo = oot

Since a > 1, we can make the right-hand side as small as we please by choosing x and y close to each
other. Hence f/(z) can be made arbitrarily small and therefore f must be a constant function (vanishing
derivative).

Problem 4.

1. For notational convenience, let ¢ = 1/p, so we have to show
bt < ta+(1—-t)b.

This obviously satisfied when either a = 0 or b = 0. So without loss of generality, let « > 0 and b > 0
so that log(a) and log(b) are well-defined. Apply logarithm to both sides of the sought inequality to
find that we need to show

tlog(a) + (1 —t)log(b) < log (ta+ (1 —t)b) .

This is the condition for the logarithm function to be concave. Another characterisation of concavity
for twice-differentiable functions is f” > 0. This condition is easily verified for the logarithm.

2. Put A = a'/? and B = b/ to immediately arrive at
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Problem 5.

1. This is immediate again by the divergence theorem and the harmonicity of u:

0 = / Audr = / OyudsS . (1)
By (y) 0By (y)

2. Perhaps we should review some basic higher dimensional spherical coordinates. Recall that in polar
coordinates (r,w) on R? the area element is dz'dr? = rdrdw. In particular, on the boundary of
a disk of radius p (i.e. a circle of radius p), we find dS = pdw. In spherical coordinates (r, 6, ¢)
on R3, the volume element is dx'dxz?dz® = r?sinfdrdfdé. On the boundary of a ball of radius p
(that is on a sphere of radius p), we find dS = p?sinfdfdgp. We may render this as dS = p?dw
with dw = sin §dfd¢ representing the area element on the unit-sphere {|w| = 1} in R3. This pattern
continues in higher dimension. For example, on R", the integration element on 0B, takes the form
dS = p" !dw, where dw represents the integration element on {|w| = 1} in R". Accordingly, we can
recast (3) as

= p! u w) dw .
0=t [ @+ @)

6



We have used the fact that on the boundary |w| = 1, the outward unit normal points in the radial
direction (straight out of the ball), Since r and w are independent variables, we are free to move 0,
outside of the integral sign. This implies now

0= p""19, u(y + pw) dw
lw]=1

Switching back to the area element dS yields finally

0 = p”18p<p1"/ u(z) dS).
aBP(y)

3. The previous question shows that the following quantity has zero derivative and must be constant:
pl_"/ u(z)dS V pe(0,R).
9By (y)

Letting p tend to 0 and to R, we reach the identity

lim p "/ u(x)dS = Rl_"/ u(z)dS .
=0 9B, (y) 9BR(y)

Next we use the given hint! to recast this as

1 1
lim u(z)dS = u(z)dS .
=0 |0B,(y)| Jon, ) 10Br(W)| JoBn(y)
Finally, calling upon Problem 2, we arrive at the mean value property for harmonic functions:
1
uly) = u(z)ds .

10Br(Y)| JoBpw)
4. In the case of a subharmonic function, equation (3) becomes an inequality:

0 < / duds . (3)
9B,(1)

Following mutatis mutandis the same line of reasoning as above, we arrive eventually at

0 < ap<,o1—” / u(z) dS) :
BBp(y)

plm / u(x)dS
9By (y)

is now a non-decreasing function of p, and in particular

lim pln/ u(z)dS < Rln/ u(z)dS .
=0 9B, (y) dBRr(y)

Proceeding as we did above, we arrive at the mean value property for subharmonic functions:

1
10BRr(Y)| Jonpw)

Hence

u(y) < u(z)dS .

'Prove the hint is true!



