Computational and Combinatorial Algebraic Topology

The following questions assume you have taken a first course in linear algebra and in abstract algebra, including group theory, and have some familiarity with rings and fields.

In the exercises below, \mathbb{Z}_n will denote the ring of integers modulo n.

- **1.** Assume V, W are finite dimensional vector spaces over the field \mathbb{F} , and let $f: V \to W$ be a linear map. Define the *cokernel* of f as the quotient coker(f) = W/Im(f).
 - (i) Prove f is surjective if and only if coker(f) = 0.
 - (ii) Prove that $\dim(coker(f)) + \dim(rk(f)) = \dim(W)$.
 - (iii) Determine a basis over \mathbb{Z}_2 for the cokernel of the map $f: (\mathbb{Z}_2)^3 \to (\mathbb{Z}_2)^3$ represented by the matrix

$$M = \begin{pmatrix} 1 & 1 & 0\\ 1 & 1 & 0\\ 0 & 1 & 1 \end{pmatrix}$$

- **2.** (i) Let $m, n \in \mathbb{Z}$ be coprime. Show there is no nontrivial homomorphism between \mathbb{Z}_m and \mathbb{Z}_n .
 - (*ii*) Prove that \mathbb{Z}_n is a field if and only if n is prime.
 - (*iii*) Prove that, if p is prime, $(\mathbb{Z}_p)^n$ is a vector space.
 - (iv) Prove that the cokernel of the map $\cdot p \colon \mathbb{Z} \to \mathbb{Z}$, defined as multiplication by a fixed prime $p \in \mathbb{Z}$ is isomorphic to \mathbb{Z}_p .
- **3.** Consider the square in the figure below, with the left/right and top/bottom identifications shown; call the resulting shape T.

- (i) Draw T.
- (ii) Consider the group quotient $\mathbb{R}^2/\mathbb{Z}^2$, corresponding to the equivalence relation $(x, y) \sim (x', y')$ if and only if $(x - x', y - y') \in \mathbb{Z}^2$. Argue that there exists a "natural" bijection between points in T and equivalence classes in the quotient $\mathbb{R}^2/\mathbb{Z}^2$.
- (*iii*) Draw the image in T of the line 2y = 3x in \mathbb{R}^2 under the bijection from point (*ii*).
- 4. Let $S^1 = \{z \in \mathbb{C} \mid |z| = 1\} \subset \mathbb{C}$ be the unit circle. Prove that S^1 is a multiplicative subgroup of $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, and describe the cosets of S^1 . Prove that $\mathbb{C}^*/S^1 \cong \mathbb{R}$.