# The Universty of Sydney <br> School of Mathematics and Statistics 

# Pre-enrolment Quiz <br> Introduction to Financial Calculus 

## AMSI Summer School 2025 <br> Lecturer: Anna Aksamit

1. Let $X$ and $Y$ be two random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ with the same distribution.
(a) Is it true that

$$
\mathbb{E}\left(\frac{X}{X+Y}\right)=\mathbb{E}\left(\frac{Y}{X+Y}\right) ?
$$

(b) Suppose additionally that $X \leq Y$. Is that true that $X=Y$ a.s.?

If the answer is "yes" prove the claim, if the answer is "no" provide a counterexample.
2. Suppose we independently roll two standard 6 -sided dice. Let $X_{1}$ and $X_{2}$ the observed number in the first and second dice respectively. Denote by $\sigma(Y)$ the $\sigma$-algebra generated by a random variable $Y$.
(a) Compute expectations $\mathbb{E}\left[X_{1}+X_{2}\right]$ and $\mathbb{E}\left[X_{1}\right]$.
(b) Compute conditional expectations $\mathbb{E}\left[X_{1}+X_{2} \mid \sigma\left(X_{1}\right)\right]$ and $\mathbb{E}\left[X_{1} \mid \sigma\left(X_{1}+X_{2}\right)\right]$.
3. Let $X$ be a random variable with normal distribution $\mathcal{N}(0,1)$.
(a) Show that $a+b X$, where $a, b \in \mathbb{R}$ has the normal distribution $\mathcal{N}\left(a, b^{2}\right)$.
(b) Find the density of $Y=e^{X}$. (The distribution of $Y$ is called the $\log$ normal distribution.)
4. A random variable $X$ has exponential distribution with parameter $\alpha>0$ if its distribution function is

$$
F_{X}(x)= \begin{cases}1-e^{-\alpha x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

(a) Let $X_{1}$ and $X_{2}$ be two independent random variables with exponential distribution with parameters $\alpha>0$ and $\beta>0$ respectively. Find the distribution function and probability density function of $\min \left\{X_{1}, X_{2}\right\}$. Compute the probability $\mathbb{P}\left(X_{1}<X_{2}\right)$.
(b) Random variables $X$ and $Y$ are independent and have exponential distribution with the same parameter $\alpha$. Find the distribution of $X-Y$.
5. Let $\Omega=[0,1], \mathcal{F}=\mathcal{B}([0,1])$ and $\mathbb{P}$ be Lebesgue measure on $(\Omega, \mathcal{F})$. Let $\mathcal{Y}$ be a sub $\sigma$ algebra and $X$ be a random variable given by:

$$
\mathcal{Y}=\sigma\left(\left[0, \frac{1}{4}\right],\left[\frac{1}{4}, 1\right]\right), \quad \text { and } \quad X(\omega)=\sqrt{\omega} .
$$

Compute the conditional expectation $\mathbb{E}(X \mid \mathcal{Y})$.
6. Let $(\Omega, \mathcal{F})$ be a measurable space and $\mathbb{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ be a filtration on that space. Suppose that $\tau_{1}$ and $\tau_{2}$ are two stopping times.
(a) Show that $\tau_{1}+\tau_{2}$ is a stopping time.
(b) Assume that $\tau_{2} \geq \tau_{1}$. Is it true that $\tau_{2}-\tau_{1}$ is a stopping time? Either prove that it is or provide an example showing that it is not.

