Warm-up questions

1. The divergence of a (smooth) vector field $V: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined as

$$
\operatorname{div} V(x):=\sum_{j=1}^{n} \frac{\partial V_{j}}{\partial x_{j}}(x)
$$

with the notation $V(x)=\left(V_{1}(x), \ldots, V_{n}(x)\right)$.
The gradient of a (smooth) function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
\nabla f(x):=\left(\frac{\partial f}{\partial x_{1}}(x), \ldots, \frac{\partial f}{\partial x_{n}}(x)\right) .
$$

The Laplacian of a (smooth) function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
\Delta f(x):=\sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{j}^{2}}(x) .
$$

Prove that, given a (smooth) vector field $V: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and (smooth) functions $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\begin{array}{r}
\operatorname{div}(\nabla f)=\Delta f \\
\Delta(f g)=f \Delta g+g \Delta f+2 \nabla f \cdot \nabla g \\
\Delta(\operatorname{div} V)=\operatorname{div}(\nabla(\operatorname{div} V)) \tag{3}
\end{array}
$$

2. If V_{n} denotes the volume of the ball of radius 1 in \mathbb{R}^{n} and A_{n} denotes the surface area of the unit sphere (i.e., the boundary of the ball of radius 1 in \mathbb{R}^{n}), prove that

$$
V_{n}=\frac{A_{n}}{n} .
$$

3. Assume that f is continuous in $(-1,1)$ and differentiable in $(-1,0) \cup$ $(0,1)$.
Suppose that

$$
\lim _{x \searrow 0} f^{\prime}(x)=\lim _{x \nearrow 0} f^{\prime}(x)=0 .
$$

Prove that f is differentiable at 0 and calculate $f^{\prime}(0)$.
4. Calculate

$$
\lim _{x \rightarrow 0}\left(\cos x+e^{x} \sin x+e^{x^{2}}-e^{x^{4}}\right)^{\frac{1}{\ln (1+x)}} .
$$

5. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be Lipschitz continuous if there exists $M>0$ such that, for every $x, y \in \mathbb{R}$,

$$
\begin{equation*}
|f(x)-f(y)| \leq M|x-y| \tag{4}
\end{equation*}
$$

Given two Lipschitz continuous functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, let

$$
h(x):=\max \{f(x), g(x)\} .
$$

Prove that h is Lipschitz continuous.

Solutions

1. We have that

$$
\operatorname{div}(\nabla f)=\operatorname{div}\left(\partial_{x_{1}} f, \ldots, \partial_{x_{n}} f\right)=\sum_{j=1}^{n} \partial_{x_{j}}\left(\partial_{x_{j}} f\right)=\sum_{j=1}^{n} \partial_{x_{j}}^{2} f=\Delta f,
$$

which is (1).
Moreover, by (1),

$$
\begin{aligned}
& \Delta(f g)=\operatorname{div}(\nabla(f g)) \\
& \quad=\operatorname{div}\left(\partial_{x_{1}}(f g), \ldots, \partial_{x_{n}}(f g)\right) \\
& \quad=\operatorname{div}\left(f \partial_{x_{1}} g+g \partial_{x_{1}} f, \ldots, f \partial_{x_{n}} g+g \partial_{x_{n}} f\right) \\
& \quad=\sum_{j=1}^{n} \partial_{x_{j}}\left(f \partial_{x_{j}} g+g \partial_{x_{j}} f\right) \\
& \quad=\sum_{j=1}^{n}\left(f \partial_{x_{j}}^{2} g+\partial_{x_{j}} f \partial_{x_{j}} g+g \partial_{x_{j}}^{2} f+\partial_{x_{j}} f \partial_{x_{j}} g\right) \\
& \quad=f \Delta g+g \Delta f+2 \nabla f \cdot \nabla g
\end{aligned}
$$

proving (2).
Also, by applying (1) to $f:=\operatorname{div} V$,

$$
\operatorname{div}(\nabla(\operatorname{div} V))=\operatorname{div}(\nabla f)=\Delta f=\Delta(\operatorname{div} V)
$$

which is (3).
2. Simple examples confirming the desired result are $n=2$ (since $V_{2}=\pi$ and $A_{2}=2 \pi$) and $n=3$ (since $V_{3}=\frac{4 \pi}{3}$ and $A_{3}=4 \pi$); even the case $n=1$ would work if understood properly (the boundary of the interval consisting of two points, giving $V_{1}=2$ and $A_{1}=2$).
The general case can be obtained, for example, by polar coordinates in \mathbb{R}^{n} : indeed, if B_{1} is the ball of unit radius, we have

$$
V_{n}=\int_{B_{1}} d x=A_{n} \int_{0}^{1} \varrho^{n-1} d \varrho=\frac{A_{n}}{n} .
$$

3. We know that for every $\epsilon>0$ there exists $\delta \in(0,1)$ such that if $x \in$ $[-\delta, 0) \cup(0, \delta]$ then $\left|f^{\prime}(x)\right| \leq \epsilon$.
Let now $h \in(0, \delta)$. Then, by the Fundamental Theorem of Calculus,

$$
|f(h)-f(0)|=\left|\int_{0}^{h} f^{\prime}(t) d t\right| \leq \int_{0}^{h}\left|f^{\prime}(t)\right| d t \leq \epsilon h .
$$

Similarly, if $h \in(-\delta, 0)$,

$$
|f(0)-f(h)|=\left|\int_{h}^{0} f^{\prime}(t) d t\right| \leq \int_{h}^{0}\left|f^{\prime}(t)\right| d t \leq \epsilon|h| .
$$

All in all, for all $h \in(-\delta, 0) \cup(0, \delta)$,

$$
|f(0)-f(h)| \leq \epsilon|h|,
$$

that is

$$
\left|\frac{f(0)-f(h)}{h}\right| \leq \epsilon,
$$

or equivalently

$$
\lim _{h \rightarrow 0} \frac{f(0)-f(h)}{h}=0 .
$$

This yields that f is differentiable at 0 , with $f^{\prime}(0)=0$.
4. Taylor's expansions can be helpful. For example, as $x \rightarrow 0$:

$$
\begin{aligned}
& \cos x=1+o(x), \\
& e^{x}=1+x+o(x), \\
& \sin x=x+o(x), \\
& e^{x^{2}}=1+o(x), \\
& e^{x^{4}}=1+o(x),
\end{aligned}
$$

that is

$$
\begin{aligned}
\cos x & +e^{x} \sin x+e^{x^{2}}-e^{x^{4}} \\
& =1+(1+x+o(x))(x+o(x))+1-1+o(x) \\
& =1+x+o(x)
\end{aligned}
$$

Since

$$
\ln (1+x)=x+o(x)
$$

we obtain that, as $x \rightarrow 0$,

$$
\begin{aligned}
& \left(\cos x+e^{x} \sin x+e^{x^{2}}-e^{x^{4}}\right)^{\frac{1}{\ln (1+x)}} \\
& \quad=\exp \left(\frac{1}{\ln (1+x)} \ln \left(\cos x+e^{x} \sin x+e^{x^{2}}-e^{x^{4}}\right)\right) \\
& \quad=\exp \left(\frac{1}{x+o(x)} \ln (1+x+o(x))\right) \\
& \quad=\exp \left(\frac{1}{x+o(x)}(x+o(x))\right) \\
& \quad=\exp \left(\frac{1+o(1)}{1+o(1)}\right)
\end{aligned}
$$

yielding that

$$
\lim _{x \rightarrow 0}\left(\cos x+e^{x} \sin x+e^{x^{2}}-e^{x^{4}}\right)^{\frac{1}{\ln (1+x)}}=e
$$

5. We suppose that f satisfies (4) for some constant M_{f} and that g satisfies (4) for some constant M_{g}.

We will show that h satisfies (4) with respect to the constant

$$
M:=\max \left\{M_{f}, M_{g}\right\}
$$

To this end, let $x, y \in \mathbb{R}$. Up to swapping f with g, we can assume that $f(x) \geq g(x)$ (in particular, $h(x)=f(x)$).

Now, if $f(y) \geq g(y)$ we see that $h(y)=f(y)$, therefore

$$
|h(x)-h(y)|=|f(x)-f(y)| \leq M_{f}|x-y| \leq M|x-y|
$$

and we are done.
Hence, we can suppose that $f(y) \leq g(y)$. In this case, $h(y)=g(y)$ and

$$
\begin{align*}
h(x) & -h(y)=f(x)-g(y) \leq f(x)-f(y) \leq|f(x)-f(y)| \\
& \leq M_{f}|x-y| \leq M|x-y| . \tag{5}
\end{align*}
$$

In the same vein,

$$
\begin{align*}
h(y) & -h(x)=g(y)-f(x) \leq g(x)-g(y) \leq|g(x)-g(y)| \\
& \leq M_{g}|x-y| \leq M|x-y| . \tag{6}
\end{align*}
$$

Gathering (5) and (6), we obtain (4) for the function h.

