Warm-up questions

1. The divergence of a (smooth) vector field V : R”™ — R" is defined as

divV (x Z 890
j

with the notation V(z) = (Vi(z),..., V,(z)).
The gradient of a (smooth) function f : R™ — R is defined as

Vf(z) = <g—i(gg>,...,§£(m)).

The Laplacian of a (smooth) function f:R™ — R is defined as

NP
Af(z) = 2. 0_35?@)

Prove that, given a (smooth) vector field V' : R” — R™ and (smooth)
functions f, g : R — R,

div(Vf)=Af, (1)
A(fg) = fAg+gAf+2Vf-Vy, (2)
A(divV) = div(V(divV)). (3)

2. If V,, denotes the volume of the ball of radius 1 in R™ and A,, denotes
the surface area of the unit sphere (i.e., the boundary of the ball of
radius 1 in R™), prove that

3. Assume that f is continuous in (—1,1) and differentiable in (—1,0) U
(0,1).

Suppose that

lim () = Ly f'(x) =

Prove that f is differentiable at 0 and calculate f(0).
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4. Calculate

1
. . 2 4\ In(1+z)
lim <COSZL‘+€$SIHCE—|—€x —ex> .
x—0

5. A function f : R — R is said to be Lipschitz continuous if there
exists M > 0 such that, for every z, y € R,

|f(z) = f(y)] < Mz —yl. (4)
Given two Lipschitz continuous functions f, g : R — R, let

h(z) := max{f(x), g(z)}.

Prove that h is Lipschitz continuous.

Solutions

1. We have that

n

div(Vf) = div(a, f,- o, On f) =D 0 (00, ) = > 05 f = Af,
Jj=1

j=1
which is (1).
Moreover, by (1),
A(fg) = div(V(fg))
= div(9,,(f9), ..., 0, (f9))
= div(f0u g + 90u, fs- ., fOr,g + 90s, [)

j=1

= (f0}.9+ 0, fOu, g+ 902 f + Or, f0u,9)

j=1

= fAg+gAf+2Vf-Vy,
proving (2).
Also, by applying (1) to f := divV,
div(V(divV)) = div(Vf) = Af = A(divV),
which is (3).



2. Simple examples confirming the desired result are n = 2 (since Vo =7
and Ay = 2m) and n = 3 (since V3 = % and A3 = 47); even the
case n = 1 would work if understood properly (the boundary of the
interval consisting of two points, giving V; = 2 and A4; = 2).

The general case can be obtained, for example, by polar coordinates
in R™: indeed, if B; is the ball of unit radius, we have

1
Vn:/ dx:An/ o
B1 0

3. We know that for every ¢ > 0 there exists § € (0,1) such that if x €
[—0,0) U (0, 4] then |f'(z)] <e.

Let now h € (0,9). Then, by the Fundamental Theorem of Calculus,

[f(h) = F(O)] =

Similarly, if h € (=46,0),

£ \—k/f d4 /|f )t < elh].

All in all, for all A € (—4,0) U (0, 9),

h h
t)dt' g/o F(0)] dE < eh.

£(0) = f(h)] < €lhl,
that is
o),
h — Y
or equivalently
ORI
h—0 h

This yields that f is differentiable at 0, with f’(0) =
4. Taylor’s expansions can be helpful. For example, as x — 0:
cosx =1+ o(z),
e* =1+x+ o(x),
sinx = x + o(x),
e =1+ o(z),
e =1+ o(z),
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that is

4

cosz + e sinz + e —e
=14+(1+x+4o(z))(r+o(x))+1—1+o0(x)
=14z + o(x).

Since
In(1+2) =z + o(z),

we obtain that, as x — 0,

1
. 2 4\ In(i+z)
(cos:B—I—ezsma:—i—e”C —e” )

= ex ;ln (COSJH— esing +e” — ex4>
P\in(1+ o)

(HO n(l+2+ oz )))
:exp(H” v o))
e ().

yielding that

. . 2 4\ In(1+z)
lim (cosx—}—ezsmx—i—e”” —e$> =e
x—0

. We suppose that f satisfies (4) for some constant M, and that g satis-
fies (4) for some constant M,.

We will show that h satisfies (4) with respect to the constant

M = max{M;, M,}.

To this end, let x, y € R. Up to swapping f with g, we can assume
that f(z) > g(x) (in particular, h(x) = f(x)).

Now, if f(y) > g(y) we see that h(y) = f(y), therefore

h(x) = h(y)| = |f(x) = f(Y)] < Mylz —y| < Mz —y|



and we are done.

Hence, we can suppose that f(y) < g(y). In this case, h(y) = g(y) and

h(z) —h(y) = f(x) —g(y) < f(x) = fly) < [|f(2) = f(y)]

(5)
< M|z —y| < Mz —yl.

In the same vein,

h(y) — h(z) = g(y) — f(z) < g(z) — g9(y) < |g(z) — g9(y)|
< M|z —y| < Mz —yl.

(6)

Gathering (5) and (6), we obtain (4) for the function h.



