STATISTICAL MODELLING AND ANALYSIS OF TIME-SERIES DATA

1. Pre-enrolment Quiz

(1) (Differentiating with vectors and matrices.) Let $x=\left[x_{1}, \ldots, x_{n}\right]^{T} \in \mathbb{R}^{n}$, a column vector. For a function $x \in \mathbb{R}^{n} \rightarrow f(x) \in \mathbb{R}$, let

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}} f(x) \\
\vdots \\
\frac{\partial}{\partial x_{n}} f(x)
\end{array}\right]
$$

Find ∇f for $f(x)=p^{T} x$ and $f(x)=x^{T} R x$ where p is a (column) vector and R is a square matrix.
(2) (Knowledge of the univariate Gaussian probability density function.) Let $p(x)=c \exp \left(a x^{2}+b x\right)$ be a Gaussian probability density function, where x is a scalar. Find the its mean and variance in terms of the constants a, b and c.
(3) (Knowledge of the conditional probability density.) A bivariate Gaussian probability density function (pdf) is

$$
f(x, y)=\frac{1}{2 \pi|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left[x-m_{1}, y-m_{2}\right] \Sigma^{-1}\left[x-m_{1}, y-m_{2}\right]^{T}\right)
$$ where $\Sigma=\left[\begin{array}{cc}\sigma_{1}^{2} & \rho \\ \rho & \sigma_{2}^{2}\end{array}\right]$ is the called covariance matrix, and vector $\left(m_{1}, m_{2}\right)^{T}$ is called the mean vector.

Show the conditional pdf $f(x \mid y)$ is a Gaussian pdf with

$$
\text { mean }=m_{1}+\frac{\rho}{\sigma_{2}^{2}}\left(y-m_{2}\right) \quad \text { and } \quad \text { variance }=\sigma_{1}^{2}-\frac{\rho^{2}}{\sigma_{2}^{2}} .
$$

(Hint: write $f(x, y)=g(x, y) h(y)$ where the function $g(x, y)$ contains all the x and $x y$ terms of $f(x, y)$ and then use the conditional pdf formula. Also, first attempt this question for $m_{1}=m_{2}=0$.)
(4) (Basic knowledge of Monte Carlo.) Let $X_{i}, i=1, \ldots, n$, be a collection of independent random variables with mean μ and variance σ^{2}. Let $\bar{X}=$ $\left(X_{1}+\ldots+X_{n}\right) / n$. Find $\mathbf{E}\left\{\left(X_{1}-\bar{X}\right)^{2}\right\}$. Now find the constant c so that

$$
c \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

is an unbiased estimate of σ^{2}.

2. Solutions

(1) $\nabla f=x$ and $\nabla f=R x+R^{T} x$.
(2) The Gaussian with mean m and variance σ^{2} density is $\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-m)^{2}\right\}$. Expand the square and match terms with $c \exp \left(a x^{2}+b x\right)$.
(3) To convey the idea, let $m_{1}=m_{2}=0$. Expand the argument of the exponential

$$
\begin{aligned}
-\frac{1}{2 \operatorname{det}}[x, y]\left[\begin{array}{cc}
\sigma_{2}^{2} & -\rho \\
-\rho & \sigma_{1}^{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]= & -\frac{1}{2 \operatorname{det}}\left(x^{2} \sigma_{2}^{2}-2 y x \rho+\sigma_{1}^{2} y^{2}\right) \\
\exp (\mathrm{LHS})=\exp (& \left.-\frac{1}{2 \sigma_{2}^{-2} \operatorname{det}}\left(x^{2}-\frac{2 x y \rho}{\sigma_{2}^{2}}+s^{2}\right)\right) \\
& \times \exp \left(\frac{1}{2 \sigma_{2}^{-2} \operatorname{det}} s^{2}-\frac{1}{2 \operatorname{det}} \sigma_{1}^{2} y^{2}\right)
\end{aligned}
$$

Let

$$
g(x, y)=\exp \left(-\frac{1}{2 \sigma_{2}^{-2} \operatorname{det}}\left(x^{2}-\frac{2 x y \rho}{\sigma_{2}^{2}}+s^{2}\right)\right)
$$

We can write

$$
f(x, y)=g(x, y) h(y)
$$

where $g(x, y)$ contains all the x and $x y$ terms of $f(x, y)$. The conditional pdf is

$$
f(x \mid y)=\frac{f(x, y)}{\int_{-\infty}^{\infty} f(x, y) \mathrm{d} x}=\frac{g(x, y)}{\int_{-\infty}^{\infty} g(x, y) \mathrm{d} x}
$$

There is no need to compute the integral in the denominator if we note that $g(x, y)$ is the exponential term of a Gaussian pdf if we choose

$$
2 s x=2 x y \frac{\rho}{\sigma_{2}^{2}}
$$

or $s=y \rho / \sigma_{2}^{2}$. Thus $f(x \mid y)$ is a Gaussian density with mean $y \rho / \sigma_{2}^{2}$ and variance $\operatorname{det} / \sigma_{2}^{2}=\left(\sigma_{1}^{2} \sigma_{2}^{2}-\rho^{2}\right) / \sigma_{2}^{2}$.
(4) Show that $\mathbf{E}\left\{\left(X_{1}-\bar{X}\right)^{2}\right\}=\sigma^{2}(n-1) / n$ and thus $c=1 /(n-1)$.

