
AMSI Summer School 2024 - A century of harmonic analysis
Preparatory Quiz

The following questions should give you a rough idea of the background required. If you get stuck, try
think on it for awhile. If you find that you are still unable to make progress, the solutions can be found
below.

1. (a) If f : Rn → C is a smooth function, compute the gradient of the function ef(x).
(b) For t > 0 and x ∈ Rn, show that the integral∫

Rn

e−t|ξ|2e2ix·ξdξ

converges absolutely, and is equal to πn/2

tn/2 e
− |x|2

t . Throughout the course, i :=
√
−1.

(Hint: First consider the case t = 1, and use part (a).)
(c) For t > 0 and x ∈ Rn, show that the integral∫

Rn

|ξ|2e−t|ξ|2e2ix·ξdξ

converges absolutely, and evaluate the integral. (Hint: Use part (b).)

2. Suppose a sequence of functions {fj : R → R} converges uniformly to a function f : R → R, and another
sequence of functions {gj : R → R} converges uniformly to a function g : R → R.
(a) Show that the sum {fj + gj} converges uniformly to f + g on R.
(b) Show that the product {fjgj} might not converge uniformly to fg on R.
(c) Can you add some assumptions to recover a positive result in part (b)?

3. Let  y1
...
yn

 =

 a11 . . . a1n
...

. . .
...

an1 . . . ann


 x1

...
xn


where xi, yi and aij are all real numbers.
(a) Suppose the sum of absolute values of the entries in each row and each column of the square matrix

above is at most A, i.e.

sup
1≤j≤n

n∑
i=1

|aij | ≤ A and sup
1≤i≤n

n∑
j=1

|aij | ≤ A.

Show that the Euclidean norm of y is at most A times that of x, i.e.( n∑
i=1

|yi|2
)1/2

≤ A
( n∑

j=1

|xj |2
)1/2

.

(b) Under the same assumptions in (a), show that for any p > 1,( n∑
i=1

|yi|p
)1/p

≤ A
( n∑

j=1

|xj |p
)1/p

.

(c) Show that if |a|, |b|, |c| ≤ 1, x0 = xn+1 = 0 and x1, . . . , xn ∈ R, then
n∑

i=1

|axi−1 + bxi + cxi+1|p ≤ 3p
n∑

i=1

|xi|p.
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4. It would also be nice to try the following multiple choice questions on Terry Tao’s webpage: http:

//scherk.pbworks.com/w/page/14864228/Quiz:Inequalities

http://scherk.pbworks.com/w/page/14864240/Quiz:Series

http://scherk.pbworks.com/w/page/14864230/Quiz3AInnerproductspaces

(Solutions of these questions are provided on the respective pages.)

Solution:

1. (a) Using the chain rule, we have ∂xje
f(x) = 2ef(x)∂xjf(x) for every j = 1, . . . , n.

(b) The integral converges absolutely because
∫
Rn e

−t|ξ|2dξ < ∞, which in turn follows from the di-
mension n = 1 case using Fubini’s theorem.
For t = 1, we verify that

π−n/2e|x|
2

∫
Rn

e−|ξ|2e2ix·ξdξ = π−n/2

∫
Rn

e−
∑n

k=1(ξk+ixk)
2
dξ

whereas the last integral is independent of x: in fact, one can differentiate the integral (justify
this!) with respect to x, and observe that for every j = 1, . . . , n,

∂xj

∫
Rn

e−
∑n

k=1(ξk+ixk)
2
dξ =

∫
Rn

−2i(ξj + ixj)e
−

∑n
k=1(ξk+ixk)

2
dξ =

∫
Rn

i∂ξje
−

∑n
k=1(ξk+ixk)

2
dξ = 0

by the fundamental theorem of calculus. This shows we could have computed the integral by
setting x = 0, and hence

π−n/2

∫
Rn

e−
∑n

k=1(ξk+ixk)
2
dξ = π−n/2

∫
Rn

e−
∑n

k=1 ξ
2
kdξ = π−n/2

∫
Rn

e−|ξ|2dξ = 1,

as desired.
The formula for

∫
Rn e

−t|ξ|2e2ix·ξdξ for general t > 0 follows by making a change of variables, where

one replaces ξ by t−1/2ξ in the integral and appeal to the result for t = 1.

(c) The integral converges absolutely because
∫
Rn |ξ|2e−t|ξ|2dξ < ∞ (the polynomial growth of |ξ|2 at

infinity is killed by the exponential decay of e−t|ξ|2 at infinity). In fact, the integral is the − ∂
∂t

derivative of the integral in part (b), which is thus

− ∂

∂t

(πn/2

tn/2
e−

|x|2
t

)
= − π

n
2

t
n
2
+2

(
|x|2 − n

2
t
)
e−

|x|2
t

for t > 0 and x ∈ Rn.

2. (a) Given ε > 0, there exists N ∈ N so that for all n ≥ N ,

sup
x∈R

|fn(x)− f(x)| ≤ ε

2
and sup

x∈R
|gn(x)− g(x)| ≤ ε

2

It follows that

sup
x∈R

|[fn + gn](x)− [f + g](x)| ≤ sup
x∈R

|fn(x)− f(x)|+ sup
x∈R

|gn(x)− g(x)|

≤ ε

2
+

ε

2
= ε.

This shows {fn + gn} converges uniformly to f + g on R.
(b) Let fn(x) = x + 1

n , gn(x) = x, f(x) = x and g(x) = x. Then fn converges to f uniformly on R,
and gn converges uniformly to g on R, but

|fn(x)gn(x)− f(x)g(x)| =
∣∣∣x(x+

1

n

)
− x2

∣∣∣ = |x|
n
,

so

sup
x∈R

|fn(x)gn(x)− f(x)g(x)| = sup
x∈R

|x|
n

= ∞

for every n ∈ N, which shows that {fngn} does not converge to fg on R.
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(c) If additionally both f and g are bounded functions on R, say supx∈R |f(x)| + supx∈R |g(x)| ≤ M
for some finite M , then fngn converges uniformly to fg on R. This is because then both {fn} and
{gn} are uniformly bounded on R: there exists M ′ ∈ R such that

sup
n∈N

sup
x∈R

|fn(x)|+ sup
n∈N

sup
x∈R

|fn(x)| ≤ M ′.

Then

sup
x∈R

|fn(x)gn(x)− f(x)g(x)|

≤ sup
x∈R

|fn(x)||gn(x)− g(x)|+ sup
x∈R

|g(x)||fn(x)− f(x)|

≤ M ′ sup
x∈R

|gn(x)− g(x)|+M sup
x∈R

|fn(x)− f(x)| → 0

as n → ∞. This shows {fngn} converges uniformly to fg on R under the additional hypothesis.

3. (a) First, for i = 1, . . . , n we have yi =
∑n

j=1 aijxj so

|yi| ≤
n∑

j=1

|aij ||xj | =
n∑

j=1

|aij |1/2(|aij |1/2|xj |)

By the Cauchy-Schwarz inequality, we have

|yi|2 ≤
( n∑

j=1

|aij ||xj |2
)( n∑

j=1

|aij |
)
≤ A

n∑
j=1

|aij ||xj |2.

Summing over i = 1, . . . , n gives
n∑

i=1

|yi|2 ≤ A
n∑

j=1

( n∑
i=1

|aij |
)
|xj |2 ≤ A2

n∑
j=1

|xj |2.

This gives the desired inequality.
(b) We can follow a similar proof as above, except that we use Hölder’s inequality to

|yi| ≤
n∑

j=1

|aij ||xj | =
n∑

j=1

|aij |(p−1)/p(|aij |1/p|xj |)

in lieu of Cauchy-Schwarz. We obtain, for every i = 1, . . . , n,

|yi|p ≤
( n∑

j=1

|aij |
)p−1( n∑

j=1

|aij ||xj |p
)
≤ Ap−1

n∑
j=1

|aij ||xj |p

and hence
n∑

i=1

|yi|p ≤ Ap−1
n∑

j=1

( n∑
i=1

|aij |
)
|xj |p ≤ Ap

n∑
j=1

|xj |p.

(c) We apply the above result with aij = 0 if |i − j| > 1, aij = a if j = i − 1, aij = b if j = i and
aij = c if j = i+ 1. We have

sup
1≤j≤n

n∑
i=1

|aij | ≤ 3 and sup
1≤i≤n

n∑
j=1

|aij | ≤ 3,

and if yi =
∑n

j=1 aijxj , then
yi = axi−1 + bxi + cxi+1.

So the previous bounds gives
n∑

i=1

|axi−1 + bxi + cxi+1|p ≤ 3p
n∑

j=1

|xj |p.
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