
Preparatory problems for AMSI course
Prime numbers in arithmetic progressions: Dirichlet’s

theorem and more

These proofs are of comparable difficulty to those we shall encounter in the course. If you find
any of these questions to be difficult you should consider whether you wish to proceed with the
course.

1. Modular arithmetic

(a) Prove that the equation x2 + 4x+ 1 = 4y2 does not have integer solutions.

(b) The remainders after division by 20 are 0, 1, 2, 3, . . . , 19. We can multiply remainders
and then reduce them modulo 20, for example, 7 ∗ 8 = 56 ≡ 16 mod 20. We say that
a remainder a modulo 20 is invertible modulo 20 if there exists a remainder b modulo
20 such that a · b gives remainder 1. For example, remainder 3 is invertible because
3 ∗ 7 = 21 ≡ 1 mod 20. Find all invertible remainders modulo 20.

(c) Prove that the remainder a modulo 20 is invertible if and only if a is coprime to 20 (i.e.
that a and 20 do not have common divisors except for 1).

(d) Find remainders of 7k modulo 13 for all positive integer k. Can you think of what 7−1

mod 13 would be?

2. Complex numbers

(a) Rewrite the following numbers in polar coordinates:

• 6 + 8i,

•
√
2− 3

4
i,

• 85− 85i,

• 2.6i,

• −
√
3.
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(b) A complex root of unity of order k is a complex number z such that zk = 1. Prove that
1
2
+

√
3
2
i is a root of unity of order 6.

(c) Find all roots of unity of order 4 and 5. You can write them in polar coordinates.

(d) Let us define eiα = cosα + i sinα. Prove that |eiα| = 1. Is eiα always a root of unity?

3. Elementary proofs

(a) Let y0 > 0 be some positive real number, and let yn = 1− e−yn−1 for n ≥ 1. Prove that
0 < yn < 1 for all n ≥ 1.

(b) This is a case of ‘induction gone bad’. Let x1 = 0 and xn+1 = (n + 1)xn for all n ≥ 1.
Let Qn be the statement ‘xn = n!’. Show that Qn implies Qn+1, but that there is no
integer n for which Qn is true.

(c) Prove, by induction, that for any real m there exists an x0 such that 3x > xm for all
x ≥ x0.

(d) For what integers n is
1

n!
>

8n

(2n)!
?

4. Integrals

(a) Find F (t) =
∫
et sin t dt for all real t.

(b) What is the asymptotic behaviour of this function when t → ∞? When t → −∞?

(c) When is F (t) increasing? When is F (t) decreasing?

(d) For what parameter A, is the function A et+e−t

2
+ sin(t) bounded?
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Solutions

1. (a) Let us assume that there exist integers x and y such that x2 + 4x+ 1 = 4y2. Then the
remainder of x2 + 4x+ 1 after division by 4 equals the remainder of 4y2 after division
by 4. This can be written as

x2 + 4x+ 1 ≡ 4y2 mod 4.

For example, since 7 · 6 = 42 = 8 · 5 + 2, then 7 · 6 and 8 · 5 + 2 should give the same
remainders after division by 4, i.e. 2. We first note that we can rearrange the equation
to

(x+ 2)2 − 3 = 4y2.

The right-hand side is divisible by 4, so gives the remainder 0, so we get

(x+ 2)2 − 3 ≡ 0 mod 4,

which is
(x+ 2)2 ≡ 3 mod 4.

Now let us answer the following question: is it possible that a square of an integer gives
remainder 3 after division by 4?

The answer is no! To prove it we can list all the possible remainders that squares can
give in the table below.

The table entries come from the following reasoning: if n has remainder 3 after division
by 4, then n2 has remainder 32 − 2 · 4 = 1 after division by 4.

n n2

0 0
1 1
2 0
3 1

The first column is all the possible remainders that n can give after division by 4:
0, 1, 2, 3. The second column shows that n2 can give only two remainders modulo 4: 0
and 1. In particular, a square number never gives the remainder 3! Hence (x+2)2 ≡ 3
mod 4 has no solutions, and thus the initial equation does not have integer solutions.

(b) One way is to write the multiplication table modulo 20. The table below should be
read as follows: if a has a remainder 4 after division by 20, and b has a remainder 7
after division by 20, then ab has a remainder 4 · 7− 20 = 8 after division by 20.
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× 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 1 4 7 10 13 16 19 2 5 8 11 14 17
4 0 4 8 12 16 0 4 8 12 16 0 4 8 12 16 0 4 8 12 16
5 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
6 0 6 12 18 4 10 16 2 8 14 0 6 12 18 4 10 16 2 8 14

7 0 7 14 1 8 15 2 9 16 3 10 17 4 11 18 5 12 19 6 13
8 0 8 16 4 12 0 8 16 4 12 0 8 16 4 12 0 8 16 4 12

9 0 9 18 7 16 5 14 3 12 1 10 19 8 17 6 15 4 13 2 11
10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10

11 0 11 2 13 4 15 6 17 8 19 10 1 12 3 14 5 16 7 18 9
12 0 12 4 16 8 0 12 4 16 8 0 12 4 16 8 0 12 4 16 8

13 0 13 6 19 12 5 18 11 4 17 10 3 16 9 2 15 8 1 14 7
14 0 14 8 2 16 10 4 18 12 6 0 14 8 2 16 10 4 18 12 6
15 0 15 10 5 0 15 10 5 0 15 10 5 0 15 10 5 0 15 10 5
16 0 16 12 8 4 0 16 12 8 4 0 16 12 8 4 0 16 12 8 4

17 0 17 14 11 8 5 2 19 16 13 10 7 4 1 18 15 12 9 6 3
18 0 18 16 14 12 10 8 6 4 2 0 18 16 14 12 10 8 6 4 2

19 0 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

The remainder r is invertible modulo 20 if there is the number 1 in the r-line in the
table above. For example, the number 13 is invertible modulo 20 because there is a 1 in
the intersection of the 13-row and 17-column (which means that 13 ·17 gives remainder
1 modulo 20). We get that 1, 3, 7, 9, 11, 13, 17, and 19 are invertible remainders modulo
20.

(c) We can check that numbers 1, 3, 7, 9, 11, 13, 17, and 19 are the only numbers from 1 to
20, which are coprime to 20.

Another way to prove this fact is to show that a and 20 are coprime if and only if
there are two integer numbers m and n such that am + 20n = 1. You can check this
statement for 1, 3, 7, 9, 11, 13, 17, and 19.

(d) We create a table of remainders of 7k after division by 13 below. We see that 76 gives
the remainder 12 after division by 13, which coincides with the remainder of −1 after
division by 13. Why do we write both 12 and −1? Because if 76 and −1 have the
same remainders modulo 13, it is easy to notice that 712 and (−1)2 = 1 give the same
remainders modulo 13. Hence, the remainder of 712 after division by 13 is 1.
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k 7k mod 13
1 7
2 10
3 5
4 9
5 11
6 12 or −1
7 6 or −7
8 3 or −10
9 8 or −5
10 4 or −9
11 2 or −11
12 1
13 7
14 10
. . . . . .

We see that the pattern repeats with the period of length 12. We can also note that
76 corresponds to half of the pattern when all remainders are multiplied by −1. Since
712 = 7 · 711 ≡ 1 mod 7, we can say that 711 is inverse to 7 modulo 13. If we didn’t
have to find the powers of 7 modulo 13, we could just note that 2 ·7 = 14 ≡ 1 mod 13,
and hence, that 2 is inverse to 7 modulo 13. Thus, we get 2 ≡ 7−1 ≡ 711 mod 13.
Important remark! We can work with a−1 mod n only when (a, n) = 1.

2. (a) Converting from rectangular form to polar form involves the formula z = x+ iy = reiθ

for r = |z| =
√

x2 + y2 and tan θ = y/x. Note that this implies there are infinitely
many possible values for θ — we usually choose the value in [−π, π).
For 6 + 8i, we would have r = 10 and θ = tan−1(4/3). The others follow similarly,
except for 2.6i = 2.6e

π
2
i, which might be best found by looking at 2.6i on the complex

plane; and −
√
3 is the same in polar form.

(b) First re-write 1
2
+

√
3
2
i = eiθ for θ = tan−1

√
3 = π/3. We then have(

e
π
3
i
)6

= e2πi = 1.

(c) A root of unity z of order 5 must satisfy the equation z5 = 1. First note that this
means |z| = r = 1, so their general form is z = eiθ. Since we can write 1 = e2πin for
any integer n, the values of θ correspond to those satisfying z5 = e5iθ = e2πin, which is

θ =
2πn

5
= . . . ,

4π

5
,
2π

5
, 0,

2π

5
,
4π

5
,
6π

5
,
8π

5
, 2π, . . . .
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The roots of unity of order 5 are thus considered to be those z = eiθ with the five values
of θ ∈ [0, 2π). We get

z = eiθ, θ ∈
{
0,

2π

5
,
4π

5
,
6π

5
,
8π

5

}
.

We can apply a similar argument to the roots of order 4 and get

z = eiθ, θ ∈
{
0,

π

2
, π,

3π

2

}
.

In this case, it is easy to find the Cartesian form of z, z = ±i,±1.

(d) By the identity cos2 x+ sin2 x = 1 we have

| cosα + i sinα| =
√
cos2 α + sin2 α = 1.

Let us show that eiα is a root of unity if and only if α
π
is rational. Indeed, eiα is a root

of unity if and only if there exists an integer q such that

(eiα)q = 1,

which is equivalent to
eqαi = 1,

and thus to qαi = 2πi · p for some integer p. We can rewrite this equation as follows

α

π
=

2p

q
,

for some integer p and q. The last equation is equivalent to α
π
being rational since any

rational number can be represented as 2p
q
for some integer p and q (the fraction does

not have to be irreducible).

3. (a) For all x > 0 we know that 0 < 1 − e−x < 1. Hence, we can prove that 0 < yn < 1 if
we can prove that yn = 1− e−yn−1 implies yn > 0 for all n ≥ 0. This will be the case if
e−yn−1 < 1, equivalently yn−1 > 0, for all n ≥ 1. Fortunately, we are told it is true for
y0. Beyond this, it is equivalent to the condition yn > 0 for all n ≥ 1.

(b) If xn = n! then xn+1 = (n+1)xn = (n+1)n! = (n+1)!, which proves that Qn ⇒ Qn+1.
However, to have xn = n! we would need xn ̸= 0 for all n ≥ 1, as if this was the
case, it would imply xn = 0 for all n ≥ 1, and it is not possible to have n! = 0 for
any n ≥ 1. Thus, the fact that x1 = 0 implies that there is no n ≥ 1 for whichQn is true.
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(c) The statement 3x > xm implies

x

log x
>

m

log 3
.

As m is a fixed number, and the LHS is an increasing function, we know that this
statement will be true for sufficiently large x. To determine the values of x for which
the LHS is increasing, we can solve for when the derivative is positive. We find that

d

dx

(
x

log x

)
=

1

log x
− 1

log2 x
> 0

⇒ log x > 1.

Hence, the function x/ log x is increasing for all x > e. Therefore, there must exist
some x0 > e for which the original statement is true for all x ≥ x0.

(d) This inequality is equivalent to
2n∏

i=n+1

i > 8n.

The left-hand side is a product of n values, starting at n + 1. As such, it is bounded
below by (n+1)n. This implies that the original inequality will be true if (n+1)n > 8n.
This is indeed the case for any n ≥ 8, as we would have n + 1 > 8. For values below
this, it is possible to check numerically, and we find that the largest exception is at
n = 5. Hence, the original statement is true for all n ≥ 6.

4. (a) Using integration by parts twice gives

F (t) = et sin(t)−
∫

et cos(t)dt

= et sin(t)−
(
et cos(t) +

∫
et sin(t)dt

)
+ c

= et sin(t)− et cos(t)− F (t) + c,

where c is some constant appearing because of integration. Rearranging, this implies

F (t) =
et

2
(sin(t)− cos(t)) + c,

where now c denotes a different constant.
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(b) We will prove that as t → ∞, the function F takes arbitrarily large positive and
negative values.

Let us look at the function sin(t)− cos(t). There are infinitely many points tk → ∞ of
the form tk = πk + π

2
, k a positive integer, such that sin(tk) − cos(tk) = 1. There are

also infinitely many points sk → ∞ of the form sk = πk, k a positive integer, such that
sin(sk)− cos(sk) = −1. Hence, F (tk) =

et

2
+ c can be arbitrarily large positive number,

and F (sk) = − et

2
+ c can be an arbitrarily large negative number.

Hence, as t → ∞, F (t) will be unbounded, and fluctuate between increasingly larger
positive and negative values. As t → −∞ however, et approaches zero and 1

2
(sin(t) −

cos(t)) is bounded between
√
2 and

√
2, and hence F (t) approaches c.

(c) The function sin(t) is bounded between −1 and −1 for all t. The function et+e−t

2
tends

to infinity as t → ∞ because
et + e−t

2
≥ et

2

for all t. Hence if A ̸= 0, then A et+e−t

2
tends to ±∞ as t → ∞ depending on the sign

of A. If A = 0, then the initial function is equal to sin(t) and, thus, is bounded.
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