AMSI Summer School: Hyperbolic Knot Theory Quiz

Problem 1 (Algebra). Let $\operatorname{SL}(2, \mathbb{C})$ denote the set of 2×2 matrices with complex coefficients and determinant one. That is, elements have the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where a, b, c, d lie in \mathbb{C} and $a d-b c=1$.
(a) Prove that the product of two matrices in $\operatorname{SL}(2, \mathbb{C})$ is in $\mathrm{SL}(2, \mathbb{C})$. Prove that the inverse of a matrix in $\operatorname{SL}(2, \mathbb{C})$ is in $\operatorname{SL}(2, \mathbb{C})$.
(b) $\mathrm{SL}(2, \mathbb{C})$ acts on $z \in \mathbb{C} \cup\{\infty\}$ as follows:

$$
A z=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(z) \mapsto \frac{a z+b}{c z+d}
$$

If $z=\infty$ we take this to be $\frac{a}{c}$. Show that the action of A and $-A$ is identical. Thus we will often consider $\operatorname{PSL}(2, \mathbb{C})=\operatorname{SL}(2, \mathbb{C}) / \sim$ where $A \sim-A$.
(c) Show that an element A in $\operatorname{PSL}(2, \mathbb{C})$ that is not the identity either fixes one or two points in $\mathbb{C} \cup\{\infty\}$. Prove that if it has exactly one fixed point, its trace is ± 2.

Problem 2 (Distance function). Recall that a function $d: X \times X \rightarrow[0, \infty)$ is called a distance function if it satisfies:
(1) (Symmetry) $d(x, y)=d(y, x)$ for all $x, y \in X$
(2) (Nondegeneracy) $d(x, y)=0$ if and only if $x=y \in X$
(3) (Triangle inequality) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

Prove that the usual Euclidean distance function $d_{E}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow[0, \infty)$ satisfies this definition, where d_{E} is given by:

$$
d_{E}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}
$$

Problem 3 (Open set). Suppose X admits a distance function $d: X \times X \rightarrow[0, \infty)$. For any $x \in X$, the ball of radius $\delta>0$ centred at x is defined to be the set:

$$
B(x, \delta)=\{y \in X \mid d(x, y)<\delta\}
$$

A set $V \subset X$ is said to be open if for every $x \in V$, there exists $\delta>0$ such that $B(x, \delta) \subset V$. It is closed if its complement is open.

Prove that if $\left\{V_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is a collection of open sets in X, then the union $\bigcup_{\alpha \in \mathcal{A}} V_{\alpha}$ is also open. Prove that if $\left\{V_{i}\right\}_{i=1}^{k}$ is a finite collection of open sets in X then the intersection $\bigcap_{i=1}^{k} V_{i}$ is open.

Problem 4 (Cauchy sequences). Again let X be a space with a distance function d. Recall that a Cauchy sequence is a sequence $\left\{x_{n}\right\}$ such that for any $\epsilon>0$, there exists $N \in \mathbb{Z}$ such that $n, m \geq N$ implies $d\left(x_{n}, x_{m}\right)<\epsilon$.
(a) Prove that if $\left\{x_{n}\right\}$ is a convergent sequence then it is a Cauchy sequence.
(b) Let X be the rational numbers \mathbb{Q} with the usual distance function inherited from \mathbb{R}. Show that there exists a Cauchy sequence in X that does not converge in X.

AMSI Summer School: Hyperbolic Knot Theory Quiz

Problem 5 (Homotopy of curves). A curve in a space X is a continuous map $\gamma:[0,1] \rightarrow X$.
Suppose γ_{0} and γ_{1} are curves, and suppose $\gamma_{0}(0)=\gamma_{1}(0)$, and $\gamma_{0}(1)=\gamma_{1}(1)$. We say the two curves γ_{0} and γ_{1} are homotopic if there exists a continuous map $H:[0,1] \times[0,1] \rightarrow X$ such that $H(t, 0)=\gamma_{0}(t)$ and $H(t, 1)=\gamma_{1}(t)$. They are homotopic rel endpoints if in addition, $H(0, s)=\gamma_{0}(0)=\gamma_{1}(0)$ and $H(1, s)=\gamma_{0}(1)=\gamma_{1}(1)$. The map H is called a homotopy. These notions give relations on the set of curves in X, namely homotopy of curves and homotopy of curves rel endpoints.

Prove that homotopy of curves is an equivalence relation. Similarly, homotopy of curves rel endpoints is an equivalence relation.

Solution.[Problem 1 Algebra] (a) The product of two matrices in $\operatorname{SL}(2, \mathbb{C})$ and the inverse are given as follows:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

All entries are in \mathbb{C}. The determinant of the product is

$$
(a e+b g) *(c f+d h)-(a f+b h)(c e+d g)=(a d-b c)(e f-g h)=1
$$

The determinant of the inverse is $a d-b c=1$.
(b) Note $-A$ adjusts the matrix A by multiplying all entries by -1 . For the action on $\mathbb{C} \cup\{\infty\}$, this has the effect of multiplying both entries in the numerator by -1 and both entries in the denominator by -1 . Hence they cancel, and the action agrees with that of A.
(c) We find the fixed points of the action of $\operatorname{PSL}(2, \mathbb{C})$ on $\mathbb{C} \cup\{\infty\}$. Suppose

$$
\frac{a z+b}{c z+d}=z . \text { Then } a z+b=c z^{2}+d z
$$

Thus z is a root of the polynomial $c z^{2}+(d-a) z-b$ with complex coefficients. The roots are given by the quadratic formula:

$$
z=\frac{(a-d) \pm \sqrt{(d-a)^{2}+4 c b}}{2 c}
$$

There will be two roots, corresponding to two fixed points, unless the discriminant $(d-a)^{2}+4 b c$ is zero, in which case there will be one root.

If the discriminant is zero, we have $d^{2}-2 d a+a^{2}+4 b c=0$. Note the left hand side of this equation is $d^{2}+a^{2}-4(a d-b c)+2 a d$, or $(d+a)^{2}-4$. So there is one root if and only if $(d+a)^{2}=4$, or $d+a= \pm 2$.

Solution.[Problem 2 Distance function] Symmetry follows from the fact that

$$
\left(x_{i}-y_{i}\right)^{2}=\left(y_{i}-x_{i}\right)^{2}
$$

so $d(x, y)=d(y, x)$.
We have $d(x, y)=0$ if and only if $\sum\left(x_{i}-y_{i}\right)^{2}=0$. Since each term in the sum is nonnegative, this is zero if and only if each $\left(x_{i}-y_{i}\right)=0$, or if and only if $\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right)$.

For the triangle inequality, for each i we have

$$
\left(x_{i}-z_{i}\right)^{2}=\left(x_{i}-y_{i}+y_{i}-z_{i}\right)^{2} \leq\left(x_{i}-y_{i}\right)^{2}+\left(y_{i}-z_{i}\right)^{2}
$$

Solution.[Problem 3 Open set] To show the union is open, we need to show that for every point x in the union, there is $\delta>0$ such that the ball $B(x, \delta)$ lies inside the union. But if x is in the union, then x must be in one of the V_{α}. Because V_{α} is open, there exists $\delta_{\alpha}>0$ such that $B\left(x, \delta_{\alpha}\right) \subset V_{\alpha}$. Since $V_{\alpha} \subset \bigcup_{\beta} V_{\beta}$, the ball $B\left(x, \delta_{\alpha}\right)$ also lies in the union.

For the intersection, suppose $x \in \bigcap V_{i}$. Then $x \in V_{i}$ for each i. Thus there exist $\delta_{1}, \ldots, \delta_{k}$ such that each $\delta_{i}>0$ and $B\left(x, \delta_{i}\right) \subset V_{i}$. Let δ be the minimum of the δ_{i}. Then $\delta>0$ and $B(x, \delta) \subset B\left(x, \delta_{i}\right) \subset V_{i}$ for $i=1, \ldots, k$. Thus $B(x, \delta) \subset \bigcap V_{i}$.

Solution.[Problem 4 Cauchy sequences] (a) Fix $\epsilon>0$. The fact that $\left\{x_{n}\right\}$ is a convergent sequence means that there exists $x \in X$ such that for any $\epsilon>0$, there exists an integer N such

AMSI Summer School: Hyperbolic Knot Theory Quiz

that $n \geq N$ implies $x_{n} \in B(x, \epsilon / 2)$. Then for $n, m \geq N$,

$$
d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x\right)+d\left(x, x_{m}\right)<\epsilon .
$$

Here the first inequality is by the triangle inequality, and the second follows from the fact that x_{n} and x_{m} lie in $B(x, \epsilon / 2)$.
(b) Choose a sequence of rational numbers converging to an irrational number. For example, take $\left\{x_{n}\right\} \subset \mathbb{Q}$ converging to $\sqrt{2}$ in \mathbb{R}. Then for any $\epsilon>0$, as above there exists N such that $n, m \geq N$ implies $d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, \sqrt{2}\right)+d\left(\sqrt{2}, x_{m}\right)<\epsilon$, so this is a Cauchy sequence. However, it cannot converge to any point in \mathbb{Q}. For if $y \in \mathbb{Q}$, then there exists $\delta>0$ such that $d(y, \sqrt{2})>\delta / 2$. Then for sufficiently large N, x_{n} lies in $B(\sqrt{2}, \delta / 2)$, which is disjoint from the ball $B(y, \delta / 2)$. Thus $\left\{x_{n}\right\}$ cannot converge to $y \in \mathbb{Q}$.

Solution.[Problem 5 Homotopy of curves] We need to show homotopy is reflexive, symmetric, and transitive.

Reflexive: For $\gamma:[0,1] \rightarrow X$, we define $H:[0,1] \times[0,1] \rightarrow X$ to be $H(t, s)=\gamma(t)$. Then this is continuous because γ is continuous, and $H(t, 0)=H(t, 1)=\gamma(t)$. Note the same argument applies for homotopy rel endpoints.

Symmetric: If γ_{0} is homotopic to γ_{1}, then there exists a continuous map $H:[0,1] \times[0,1] \rightarrow X$ with $H(t, 0)=\gamma_{0}(t)$ and $H(t, 1)=\gamma_{1}(t)$. Then define $\bar{H}:[0,1] \times[0,1] \rightarrow X$ by $\bar{H}(t, s)=$ $H(t, 1-s)$. Then $\bar{H}(t, 0)=H(t, 1)=\gamma_{1}(t)$ and $\bar{H}(t, 1)=H(t, 0)=\gamma_{0}(t)$. Thus homotopy is symmetric. Observe that if $H(0, s)=\gamma_{0}(0)=\gamma_{1}(0)$ for all s, then $\bar{H}(0, s)=\gamma_{0}(s)=\gamma_{1}(s)$ for all s, and similarly for $\bar{H}(1, s)$. So symmetry holds rel endpoints.

Transitive: Suppose γ_{0} is homotopic to γ_{1} and γ_{1} is homotopic to γ_{2}, via homotopies H and G. Then let $F:[0,1] \times[0,1] \rightarrow X$ be defined by

$$
F(t, s)= \begin{cases}H(t, 2 s) & \text { if } 0 \leq s \leq 1 / 2 \\ G(t, 2 s-1) & \text { if } 1 / 2 \leq s \leq 1\end{cases}
$$

Note when $s=1 / 2, H(t, 2 s)=H(t, 1)=\gamma_{1}(t)=G(t, 0)=G(t, 2 s-1)$, so F is continuous. Then $F(t, 0)=H(t, 0)=\gamma_{0}(t)$ and $F(t, 1)=G(t, 1)=\gamma_{2}(t)$, so F is a homotopy from γ_{0} to γ_{2}. Thus it is transitive.

If the homotopies H and G are rel endpoints, then so is the homotopy F. So homotopy rel endpoints is also transitive.

