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Practice questions
The following questions will help you prepare and assess your readiness for the course.

Let u, v ∈ C∞(Ω), and define the standard L2-scalar product and norm

(v, u) =

∫
Ω

uv dx, ∥u∥2 = (u, u).

1. Let Ω = [0, 1]. Show that(
u,

dv

dx

)
+

(
du

dx
, v

)
= u(1)v(1)− u(0)v(0).

Discretise the interval Ω = [0, 1] uniformly into n grid points with xj = (j − 1)∆x, j = 1, 2, . . . , n,
∆x = 1/(n − 1). Denote uj = u(xj) with u = (u1, u2, . . . , un)

T ∈ Rn being the restriction
of the smooth function u : R → R on the grid xj . We introduce the diagonal matrix operators
Ih = ∆xdiag([1, 1, · · · , 1]) and H = ∆xdiag([h1, h2, · · · , hn]), where hj > 0 are real positive
weights independent of ∆x. Define the discrete scalar products

⟨v,u⟩H := vTHu = ∆x

n∑
j=1

ujvjhj , ⟨v,u⟩Ih := vT Ihu = ∆x

n∑
j=1

ujvj . (1)

2. Show that the discrete norms ∥u∥2Ih = ⟨u,u⟩Ih , ∥u∥2H = ⟨u,u⟩H, are equivalent.

Exactness of quadrature rules for polynomials. Let 1 := (1, 1, . . . , 1)T ∈ Rn, then

⟨1,u⟩H ≈
∫ 1

0

u dx. (2)

3. For a monomial u(x) = xp with p ∈ N. Show that if h1 = hn = 1/2 and hj = 1, for 1 < j < n

and p = 1, then ⟨1,u⟩H =
∫ 1

0
u dx for all n ≥ 2.

[Think about: Can we construct composite quadrature rules such that ⟨1,u⟩H =
∫ 1

0
u dx for finite n

and fixed p > 1?]

4. Let H be defined by h1 = hn = 17/48, h2 = hn−1 = 59/48, h3 = hn−2 = 43/48, h4 =
hn−3 = 49/48, and hj = 1, for 4 < j < n − 3. Write a simple Python code to verify that
⟨1,u⟩H =

∫ 1

0
u dx for n ≥ 8, with u(x) = xp and 0 ≤ p ≤ 3.

Summation-by-parts principle. Let D ∈ Rn×n denote a discrete derivative operator on the grid, that
is (Du)j ≈ ∂u/∂x|x=xj

.

5. Show that if D ∈ Rn×n satisfies

D = H−1Q, Q+QT = B := diag([−1, 0, · · · , 1]), H = HT > 0, (3)

then
⟨v, Du⟩H + ⟨Dv,u⟩H = unvn − u1v1.
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High order methods

Let D ∈ Rn×n be defined by

(Du)j =


u2−u1

∆x , j = 1
uj+1−uj−1

2∆x , 1 < j < n
un−un−1

∆x , j = n

 . (4)

6. Show that for a sufficiently smooth function u : R → R the discrete derivative operator (Du)j
defined in (4) can be written as

(Du)j =
du

dx
|x=xj

+ Tj , (5)

where T is the truncation error. Determine the truncation error Tj for all j = 1, 2, . . . n. Discuss
what happens to the truncation error as ∆x → 0.

7. Write a simple Python code implementing the discrete derivative operator (Du)j defined in
(4). Consider u(x) = x3 for x ∈ [0, 1] and verify the accuracy of the operator, compare the error
ej = |(Du)j − u′(xj)| to the truncation error Tj .

8. Show that the discrete derivative operator (Du)j defined in (4) satisfies (3), that is

D = H−1Q, Q+QT = B := diag([−1, 0, · · · , 1]), H = HT > 0,

where h1 = hn = 1/2 and hj = 1, for 1 < j < n. Determine the corresponding matrix operator Q.

9. Consider the IVP
∂u

∂t
= −a

∂u

∂x
, x ∈ (−∞,∞), t ≥ 0, a > 0, (6a)

u(x, 0) = f(x), (6b)

Verify that u(x, t) = f(x− at) solves the IVP.

10. Consider the IBVP
∂u

∂t
= −a

∂u

∂x
, x ∈ (0,∞), t ≥ 0, a > 0, (7a)

u(x, 0) = 0, x ∈ Ω, (7b)
u(0, t) = g(t), t ≥ 0, (7c)

with compatible data, that is g(0) = u(0, 0) = 0. Show that

u(x, t) =

{
g(t− x/a), if t− x/a ≥ 0

0, else

}
.

solves the IBVP.

11. Consider the linear differential operator

P

(
∂

∂x

)
u = a

∂2u

∂x2
+ b

∂u

∂x
+ cu, x ∈ R,

for real constants a > 0, b, c ∈ R with the decay condition |u| → 0 at |x| → ∞. Show that the
operator P is semi-bounded, that is (u, Pu) ≤ αc∥u∥2 for some αc ∈ R.

12. Consider the IVP
∂u

∂t
= P

(
∂

∂x

)
u, P

(
∂

∂x

)
u = a

∂2u

∂x2
+ b

∂u

∂x
+ cu, x ∈ (−∞,∞), t ≥ 0, (8a)

u(x, 0) = eikx, k ∈ R. (8b)

Determine ω ∈ C so that u(x, t) = eωt+ikx is a solution to the IVP.

13. Consider the IVP
∂u

∂t
= P

(
∂

∂x

)
u, x ∈ (−∞,∞), t ≥ 0, (9a)

u(x, 0) = f(x). (9b)
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High order methods

Show that if the differential operator P is semi-bounded, that is (u, Pu) ≤ αc∥u∥2, then

∥u(t)∥ ≤ eαct∥f∥, ∀ t ≥ 0.

14. Consider the semi-discrete approximation of the IVP

du

dt
= Pu, t ≥ 0, u(t) ∈ Rn, (10a)

u(0) = f , (10b)

where P ≈ P (∂/∂x) approximates the spatial differential operator on a grid and the time derivative
is left continuous. Show that the if the discrete spatial differential operator P is semi-bounded in a
discrete scalar product, that is ⟨u,Pu⟩H ≤ αd∥u∥2H then

∥u(t)∥H ≤ eαdt∥f∥H, ∀ t ≥ 0.

15. Let x0, x1, x2 ∈ R, x0 ̸= x2. Show that there exists a unique cubic polynomial p such that

p(x0) = f(x0), p′(x1) = f ′(x1), p′′(x1) = f ′′(x1), p(x2) = f(x2),

where f is a given function.

16. Let us consider the first order ODE
dy

dt
= f(t, y), t ≥ 0,

y(0) = c, c ∈ R.

In order to numerically solve this ODE, we introduce a discretisation tn+1 = tn + h, where h > 0 is
the step size, t0 = 0, n = 1, 2, . . .. We compute the numerical approximation for this ODE using the
following recurrence formula:

yn+1 = yn +
h

2
(f(tn+1, yn + hf(tn, yn)) + f(tn, yn)) , y0 = c, n = 1, 2, . . . . (11)

Here, yn is the numerical approximation of the solution y at t = tn, that is yn ≈ y(tn).

• Suppose that f(t, y) = λy, where λ is a complex constant such that Re(λ) < 0. Show that for
all n ≥ 1, we have

yn = ρny0,

where ρ = 1 + hλ+ h2λ2

2 . Using this result, derive a condition on the step size h such that the
numerical approximation (11) is stable, that is |yn| < ∞ for all n ≥ 0.

• Write a code to implement (11). Test your code with f(t, y) = λy, where y0 = 10 and λ = −1
is a constant. Run your code until the final time t = 10, with various step sizes and compare
your results with the analytical solution y(t) = y0e

λt. Try to see what happens if the step size
violates the condition that you have derived previously.

17. Consider the iteration equation

uk+1 = Auk, u0 = f , k ≥ 0, uk ∈ Rn, A ∈ Rn×n.

What is the necessary condition on the iteration matrix A so that if ∥f∥ < ∞ then ∥uk∥ < ∞ for
k → ∞?
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Practice questions
The following questions will help you prepare and assess your readiness for the course.

Let u, v ∈ C∞(Ω), and define the standard L2-scalar product and norm

(v, u) =

∫
Ω

uv dx, ∥u∥2 = (u, u).

1. Let Ω = [0, 1]. Show that(
u,

dv

dx

)
+

(
du

dx
, v

)
= u(1)v(1)− u(0)v(0).

Sol: Applying the integration-by-parts formula to the first term gives(
u,

dv

dx

)
+

(
du

dx
, v

)
=

∫ 1

0

u
dv

dx
dx+

∫ 1

0

du

dx
v dx

= uv|10 −
∫ 1

0

du

dx
v dx+

∫ 1

0

du

dx
v dx

= u(1)v(1)− u(0)v(0).

Discretise the interval Ω = [0, 1] uniformly into n grid points with xj = (j − 1)∆x, j = 1, 2, . . . , n,
∆x = 1/(n − 1). Denote uj = u(xj) with u = (u1, u2, . . . , un)

T ∈ Rn being the restriction
of the smooth function u : R → R on the grid xj . We introduce the diagonal matrix operators
Ih = ∆xdiag([1, 1, · · · , 1]) and H = ∆xdiag([h1, h2, · · · , hn]), where hj > 0 are real positive
weights independent of ∆x. Define the discrete scalar products

⟨v,u⟩H := vTHu = ∆x

n∑
j=1

ujvjhj , ⟨v,u⟩Ih := vT Ihu = ∆x

n∑
j=1

ujvj . (1)

2. Show that the discrete norms ∥u∥2Ih = ⟨u,u⟩Ih , ∥u∥2H = ⟨u,u⟩H, are equivalent.

Sol: These two discrete norms are equivalent if there exists two positive real constants α > 0 and
β > 0 such that

α∥u∥Ih ≤ ∥u∥H ≤ β∥u∥Ih . (2)

From the definition of the discrete norms, we have

∥u∥2H = ⟨u,u⟩H = ∆x

n∑
j=1

hju
2
j ≤

(
max

i
hi

)
∆x

n∑
j=1

u2
j =

(
max

i
hi

)
∥u∥2Ih . (3)

Similarly,

∥u∥2H ≥
(
min
i

hi

)
∥u∥2Ih . (4)
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High order methods

Therefore, (
min
i

hi

)
∥u∥2Ih ≤ ∥u∥2H ≤

(
max

i
hi

)
∥u∥2Ih , (5)

and hence the norms are equivalent with α =
√
(mini hi) > 0 and β =

√
(maxi hi) > 0.

Exactness of quadrature rules for polynomials. Let 1 := (1, 1, . . . , 1)T ∈ Rn, then

⟨1,u⟩H ≈
∫ 1

0

u dx. (6)

3. For a monomial u(x) = xp with p ∈ N. Show that if h1 = hn = 1/2 and hj = 1, for 1 < j < n

and p = 1, then ⟨1,u⟩H =
∫ 1

0
u dx for all n ≥ 2.

Sol: From the definition of the discrete scalar products, we have

⟨1,u⟩H = 1THu =

n∑
j=1

∆xhjuj = ∆x

n∑
j=1

hju(xj) = ∆x

n∑
j=1

hjxj

= ∆x2
n∑

j=1

(j − 1)hj = ∆x2

n−1∑
j=2

(j − 1) +
1

2
(n− 1)


= ∆x2

n−2∑
j=1

j +
1

2
(n− 1)

 = ∆x2

(
1

2
(n− 1)(n− 2) +

1

2
(n− 1)

)

=
1

2
∆x2(n− 1)2 =

1

2
=

∫ 1

0

u dx.

[Think about: Can we construct composite quadrature rules such that ⟨1,u⟩H =
∫ 1

0
u dx for finite n

and fixed p > 1?]

4. Let H be defined by h1 = hn = 17/48, h2 = hn−1 = 59/48, h3 = hn−2 = 43/48, h4 =
hn−3 = 49/48, and hj = 1, for 4 < j < n − 3. Write a simple Python code to verify that
⟨1,u⟩H =

∫ 1

0
u dx for n ≥ 8, with u(x) = xp and 0 ≤ p ≤ 3.

Sol: See attached Jupyter Notebook

Summation-by-parts principle. Let D ∈ Rn×n denote a discrete derivative operator on the grid, that
is (Du)j ≈ ∂u/∂x|x=xj

.

5. Show that if D ∈ Rn×n satisfies

D = H−1Q, Q+QT = B := diag([−1, 0, · · · , 1]), H = HT > 0, (7)

then
⟨v, Du⟩H + ⟨Dv,u⟩H = unvn − u1v1.

Sol: Consider
⟨v, Du⟩H + ⟨Dv,u⟩H = vT (HD)u+ vT (HD)Tu.

Note that HD = Q and Q+QT = B := diag([−1, 0, · · · , 1]), then

⟨v, Du⟩H + ⟨Dv,u⟩H = vT (Q+QT )u = vTBu = unvn − u1v1.

Let D ∈ Rn×n be defined by

(Du)j =


u2−u1

∆x , j = 1
uj+1−uj−1

2∆x , 1 < j < n
un−un−1

∆x , j = n

 . (8)

6. Show that for a sufficiently smooth function u : R → R the discrete derivative operator (Du)j
defined in (8) can be written as

(Du)j =
du

dx
|x=xj

+ Tj , (9)
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High order methods

where T is the truncation error. Determine the truncation error Tj for all j = 1, 2, . . . n. Discuss
what happens to the truncation error as ∆x → 0.

Sol: We use Taylor expansions

u(x+∆x) = u(x) + ∆x
du

dx
+

∆x2

2

d2u(x)

dx2
+

∆x3

6

d3u(x)

dx3
+ · · · ,

u(x−∆x) = u(x)−∆x
du

dx
+

∆x2

2

d2u(x)

dx2
− ∆x3

6

d3u(x)

dx3
+ · · · ,

then we have
u(x+∆x)− u(x)

∆x
=

du(x)

dx
+

∆x

2

d2u(x)

dx2
+

∆x2

6

d3u(x)

dx3
+ · · · ,

u(x+∆x)− u(x−∆x)

2∆x
=

du(x)

dx
+

∆x2

6

d3u(x)

dx3
+ · · · ,

u(x)− u(x−∆x)

∆x
=

du

dx
− ∆x

2

d2u(x)

dx2
+

∆x2

6

d3u(x)

dx3
+ · · · .

Taylor remainder theorem gives

(Du)j =


u2−u1

∆x = du(x1)
dx + T1, j = 1

uj+1−uj−1

2∆x =
du(xj)

dx + Tj , 1 < j < n
un−un−1

∆x = du(xn)
dx + Tn, j = n

 ,

where

Tj =


∆x
2

d2u(ξ)
dx2 , x1 ≤ ξ ≤ x2, j = 1

∆x2

6
d3u(ξ)
dx3 + · · · , 1 < j < n, xj−1 ≤ ξ ≤ xj+1

−∆x
2

d2u(ξ)
dx2 , xn−1 ≤ ξ ≤ xn, j = n

 .

Note that T1 = O(∆x), Tn = O(∆x), and Tj = O(∆x2) for 1 < j < n. Thus we must have
∆x → 0 =⇒ Tj → 0 for all j = 1, 2, · · · , n.

7. Write a simple Python code implementing the discrete derivative operator (Du)j defined in
(8). Consider u(x) = x3 for x ∈ [0, 1] and verify the accuracy of the operator, compare the error
ej = |(Du)j − u′(xj)| to the truncation error Tj .

Sol: See attached Jupyter Notebook

8. Show that the discrete derivative operator (Du)j defined in (8) satisfies (7), that is

D = H−1Q, Q+QT = B := diag([−1, 0, · · · , 1]), H = HT > 0,

where h1 = hn = 1/2 and hj = 1, for 1 < j < n. Determine the corresponding matrix operator Q.

Sol: For simplicity, we consider n = 5. The matrix for the derivative operator D is given by

D =
1

∆x



−1 1 0 0 0

− 1
2 0 1

2 0 0

0 − 1
2 0 1

2 0

0 0 − 1
2 0 1

2

0 0 0 −1 1


= H−1



− 1
2

1
2 0 0 0

− 1
2 0 1

2 0 0

0 − 1
2 0 1

2 0

0 0 − 1
2 0 1

2

0 0 0 − 1
2

1
2


︸ ︷︷ ︸

Q

.

Then we have

Q+QT = B =



−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1


= diag([−1, 0, · · · , 1]).
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High order methods

9. Consider the IVP
∂u

∂t
= −a

∂u

∂x
, x ∈ (−∞,∞), t ≥ 0, a > 0, (10a)

u(x, 0) = f(x), (10b)

Verify that u(x, t) = f(x− at) solves the IVP.

Sol: Clearly, we have u(x, 0) = f(x − a(0)) = f(x), which implies that the initial condition is
satisfied. To show that u satisfies the PDE, we compute the first partial derivatives of u. We obtain

∂u

∂t
=

∂

∂t
f(x− at) = −af ′(x− at)

and
∂u

∂x
=

∂

∂x
f(x− at) = f ′(x− at).

Hence
∂u

∂t
+ a

∂u

∂x
= −af ′(x− at) + af ′(x− at) = 0.

Therefore, u solves the IVP.

10. Consider the IBVP
∂u

∂t
= −a

∂u

∂x
, x ∈ (0,∞), t ≥ 0, a > 0, (11a)

u(x, 0) = 0, x ∈ Ω, (11b)
u(0, t) = g(t), t ≥ 0, (11c)

with compatible data, that is g(0) = u(0, 0) = 0. Show that

u(x, t) =

{
g(t− x/a), if t− x/a ≥ 0

0, else

}
.

solves the IBVP.

Sol: When x = 0, we have t− x/a = t ≥ 0, and hence u(0, t) = g(t) for all t ≥ 0. When t = 0, it
is clear that t− x/a = −x/a < 0, which implies u(x, 0) = 0. Therefore, u satisfies the initial and
boundary conditions. To show that u also satisfies the PDE, we compute the first derivatives

∂u

∂t
=

{
g′(t− x/a), if t− x/a ≥ 0

0, else

}
,

∂u

∂x
=

{
− 1

ag
′(t− x/a), if t− x/a ≥ 0

0, else

}
.

We obtain
∂u

∂t
+ a

∂u

∂x
=

{
g′(t− x/a)− g′(t− x/a) = 0, if t− x/a ≥ 0

0, else

}
= 0.

Thus, u solves the IBVP.

11. Consider the linear differential operator

P

(
∂

∂x

)
u = a

∂2u

∂x2
+ b

∂u

∂x
+ cu, x ∈ R,

for real constants a > 0, b, c ∈ R with the decay condition |u| → 0 at |x| → ∞. Show that the
operator P is semi-bounded, that is (u, Pu) ≤ αc∥u∥2 for some αc ∈ R.

Sol: We consider (u, Pu) and use integration by parts, we have

(u, Pu) = a

(
u,

∂2u

∂x2

)
+ b

(
u,

∂u

∂x

)
+ (u, cu)

= −a

(
∂u

∂x
,
∂u

∂x

)
+ (u, cu) + au

∂u

∂x

∣∣∣∣x=∞

x=−∞
+ b

u2

2

∣∣∣∣x=∞

x=−∞
.
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Using the decay conditions to eliminate the boundary terms yields

(u, Pu) = −a

(
∂u

∂x
,
∂u

∂x

)
+ c (u, u) ≤ c (u, u) = c∥u∥2.

Therefore

(u, Pu) ≤ αc∥u∥2, αc = c.

12. Consider the IVP
∂u

∂t
= P

(
∂

∂x

)
u, P

(
∂

∂x

)
u = a

∂2u

∂x2
+ b

∂u

∂x
+ cu, x ∈ (−∞,∞), t ≥ 0, (12a)

u(x, 0) = eikx, k ∈ R. (12b)

Determine ω ∈ C so that u(x, t) = eωt+ikx is a solution to the IVP.

Sol: Inserting u(x, t) = eωt+ikx in (12) we have

ωu = P̂ (ik)u, where P̂ (ik) = −ak2 + ibk + c.

To ensure that u satisfies the PDE, We must have ω = P̂ (ik). Note that u(x, 0) = eikx satisfies the
initial condition.

13. Consider the IVP
∂u

∂t
= P

(
∂

∂x

)
u, x ∈ (−∞,∞), t ≥ 0, (13a)

u(x, 0) = f(x). (13b)

Show that if the differential operator P is semi-bounded, that is (u, Pu) ≤ αc∥u∥2, then

∥u(t)∥ ≤ eαct∥f∥, ∀ t ≥ 0.

Sol: We consider
1

2

d

dt
∥u∥2 =

(
u,

∂u

∂t

)
= (u, Pu) ≤ αc∥u∥2,

and we have
1

2

d

dt
∥u∥2 ≤ αc∥u∥2 ⇐⇒ d

dt
∥u∥ ≤ αc∥u∥.

It follows that we have the differential inequality

d

dt
∥u∥ − αc∥u∥ ≤ 0.

We recognize that the left hand side of the inequality is in the form of a first order linear ODE, and
hence we multiply both sides of the inequality by the integrating factor e−αct. We obtain

e−αct
d

dt
∥u∥ − e−αctαc∥u∥ =

d

dt

(
e−αct∥u∥

)
≤ 0,

where we have used the product rule. Integrating both sides from 0 to T gives

e−αcT ∥u(T )∥ − ∥u(0)∥ ≤ 0,

which implies
∥u(T )∥ ≤ eαcT ∥f∥.

Since T ≥ 0 is arbitrary, we conclude that ∥u(t)∥ ≤ eαct∥f∥ for all t ≥ 0.

14. Consider the semi-discrete approximation of the IVP

du

dt
= Pu, t ≥ 0, u(t) ∈ Rn, (14a)

u(0) = f , (14b)

5
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where P ≈ P (∂/∂x) approximates the spatial differential operator on a grid and the time derivative
is left continuous. Show that the if the discrete spatial differential operator P is semi-bounded in a
discrete scalar product, that is ⟨u,Pu⟩H ≤ αd∥u∥2H then

∥u(t)∥H ≤ eαdt∥f∥H, ∀ t ≥ 0.

Sol: The steps are similar as above, the only difference here is that we consider a discrete scalar
product ⟨·, ·⟩H and a discrete norm ∥ · ∥H. Again we consider

1

2

d

dt
∥u∥2H = ⟨u, du

dt
⟩H = ⟨u,Pu⟩H ≤ αd∥u∥2H,

and we have

1

2

d

dt
∥u∥2H ≤ αd∥u∥2H ⇐⇒ d

dt
∥u∥H ≤ αd∥u∥H.

It follows that we have the differential inequality

d

dt
∥u∥H − αd∥u∥H ≤ 0,

which gives
∥u(t)∥H ≤ eαdt∥f∥H.

15. Let x0, x1, x2 ∈ R, x0 ̸= x2. Show that there exists a unique cubic polynomial p such that

p(x0) = f(x0), p′(x1) = f ′(x1), p′′(x1) = f ′′(x1), p(x2) = f(x2),

where f is a given function.

Sol: Write the cubic polynomial as p(x) = ax3 + bx2 + cx + d, where a, b, c, d ∈ R are to be
determined. The first and second derivatives of p are

p′(x) = 3ax2 + 2bx+ c and p′′(x) = 6ax+ 2b

respectively. Hence, the given conditions can be written as the following linear system:1 x0 x2
0 x3

0

1 x2 x2
2 x3

2

0 1 2x1 3x2
1

0 0 2 6x1


dcb
a

 =

 f(x0)
f(x2)
f ′(x1)
f ′′(x1)

 .

We need to show that this linear system has a unique solution. To this end, we compute the determinant

det


1 x0 x2

0 x3
0

1 x2 x2
2 x3

2

0 1 2x1 3x2
1

0 0 2 6x1


 = det


1 x0 x2

0 x3
0

0 x2 − x0 x2
2 − x2

0 x3
2 − x3

0

0 1 2x1 3x2
1

0 0 2 6x1




= det

x2 − x0 x2
2 − x2

0 x3
2 − x3

0

1 2x1 3x2
1

0 2 6x1


where we have used row operations and expanded along the first column. We expand along the first
column again, and we use the fact that x2 − x0 ̸= 0. We obtain

det

x2 − x0 x2
2 − x2

0 x3
2 − x3

0

1 2x1 3x2
1

0 2 6x1


= (x2 − x0)(12x

2
1 − 6x2

1)− (6x1(x
2
2 − x0)

2 − 2(x3
2 − x3

0))

= (x2 − x0)(6x
2
1 − 6x1x2 − 6x1x0 + 2x2

2 + 2x2x0 + 2x2
0)

= (x2 − x0)((c1 − c2)
2 + c21 + c22)) ̸= 0,

6
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where c1 = x1 − x0 and c2 = x2 − x1. Since the determinant is nonzero, the matrix is nonsingular,
and hence there exists a unique solution.

16. Let us consider the first order ODE
dy

dt
= f(t, y), t ≥ 0,

y(0) = c, c ∈ R.
In order to numerically solve this ODE, we introduce a discretisation tn+1 = tn + h, where h > 0 is
the step size, t0 = 0, n = 1, 2, . . .. We compute the numerical approximation for this ODE using the
following recurrence formula:

yn+1 = yn +
h

2
(f(tn+1, yn + hf(tn, yn)) + f(tn, yn)) , y0 = c, n = 1, 2, . . . . (15)

Here, yn is the numerical approximation of the solution y at t = tn, that is yn ≈ y(tn).

• Suppose that f(t, y) = λy, where λ is a complex constant such that Re(λ) < 0. Show that for
all n ≥ 1, we have

yn = ρny0,

where ρ = 1 + hλ+ h2λ2

2 . Using this result, derive a condition on the step size h such that the
numerical approximation (15) is stable, that is |yn| < ∞ for all n ≥ 0.

• Write a code to implement (15). Test your code with f(t, y) = λy, where y0 = 10 and λ = −1
is a constant. Run your code until the final time t = 10, with various step sizes and compare
your results with the analytical solution y(t) = y0e

λt. Try to see what happens if the step size
violates the condition that you have derived previously.

Sol:

• Since f(t, y) = λy, we have

f(tn, yn) = λyn,

f(tn+1, yn + hf(tn, yn)) = f(tn+1, yn + hλyn) = λ(yn + hλyn) = λyn + hλ2yn.

Hence, (15) becomes

yn+1 = yn +
h

2

(
λyn + hλ2yn + λyn

)
=

(
1 + hλ+

h2λ2

2

)
yn.

Therefore, for all n ≥ 1, we have

yn =

(
1 + hλ+

h2λ2

2

)
yn−1

=

(
1 + hλ+

h2λ2

2

)2

yn−2 = . . . =

(
1 + hλ+

h2λ2

2

)n

y0 = ρny0,

where ρ(z) = 1 + z + z2

2 and z = hλ ∈ C. To ensure that |yn| is bounded, ρ must satisfy the
condition |ρ| ≤ 1. For real λ < 0 this implies h ≤ −2/λ.

See attached Jupyter Notebook for code.

17. Consider the iteration equation

uk+1 = Auk, u0 = f , k ≥ 0, uk ∈ Rn, A ∈ Rn×n.

What is the necessary condition on the iteration matrix A so that if ∥f∥ < ∞ then ∥uk∥ < ∞ for
k → ∞?

Sol: We consider

u1 = Au0 = Af , u2 = Au1 = A2u0 = A2f , . . . , uk = Akf ,

and hence taking the norm of both sides gives

∥uk∥ = ∥Akf∥ ≤ ∥Ak∥∥f∥.

Note that limk→∞ ∥Ak∥ = ∞ ⇐⇒ ρ(A) > 1, where ρ(A) is the spectral radius of A. Therefore
we must have ρ(A) ≤ 1.
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