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Practice questions
The following questions will help you prepare and assess your readiness for the course.

Let u,v € C*°(R), and define the standard Ls-scalar product and norm

(v,u) = /qu dr, |ull* = (u,u).

1. Let 2 = [0, 1]. Show that
(u, jj;) + (ﬁ’”) = u(1)v(1) — u(0)v(0).

Discretise the interval @ = [0, 1] uniformly into n grid points with z; = (j — 1)Az, j =1,2,...,n,
Az = 1/(n — 1). Denote u; = u(x;) with u = (u,us,...,u,)’T € R" being the restriction
of the smooth function v : R — R on the grid ;. We introduce the diagonal matrix operators
I, = Az diag([1,1,---,1]) and H = Az diag([h1, ha,- - , hy]), Where h; > 0 are real positive
weights independent of Az. Define the discrete scalar products

n n
(v,wg = v Hu = AxZujvjhj, (viu)g, = v Tu= AxZujvj. (1)
j=1 j=1
2. Show that the discrete norms [[ullf, = (u,u)r,, [[ullf; = (u, u)m, are equivalent.

Exactness of quadrature rules for polynomials. Let 1 := (1,1,...,1)7 € R™, then
1
(1,u)m %/ wdx. )
0

3. For a monomial u(x) = 2P with p € N. Show thatif h; = h, =1/2and h; = 1,forl1 < j <n
and p = 1, then (1,u)yg = f01 u dx for all n > 2.

[Think about: Can we construct composite quadrature rules such that (1, u)g = fol u dz for finite n
and fixed p > 17]

4. Let H be defined by hy = h,, = 17/48, ho = hy,—1 = 59/48, hg = h,_o = 43/48, hy =
hp—s = 49/48, and h; = 1, for 4 < j < n — 3. Write a simple Python code to verify that

(1,u)g = fol wdx forn > 8, with u(z) = 2P and 0 < p < 3.

Summation-by-parts principle. Let D € R™*™ denote a discrete derivative operator on the grid, that
is (Du); ~ 0u/0x|p—q, -

5. Show that if D € R™*" satisfies
D=H'Q, Q+Q"=B:=dag([-1,0,---,1]), H=H" >0, (3)

then
<Va DU>H + <DV, u>H = UpUp — U1V].
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Let D € R™"*™ be defined by

uz—uy —
Ar 0 J
U4 —Uj— -
(Du); = 7?;937 Lol<j<n . 4
n AIW—17 ] =n

6. Show that for a sufficiently smooth function » : R — R the discrete derivative operator (Du);
defined in (4) can be written as

du
(Du)j = %|I:E]‘ + ij (5)

where T is the truncation error. Determine the truncation error T; for all j = 1,2,...n. Discuss
what happens to the truncation error as Az — 0.

7. Write a simple Python code implementing the discrete derivative operator (Du); defined in
(4). Consider u(x) = 23 for z € [0,1] and verify the accuracy of the operator, compare the error
e; = |(Du); — u'(x;)| to the truncation error T}.

8. Show that the discrete derivative operator (Du); defined in (4) satisfies (3), that is

D=H'Q, Q+Q"=B:=dag(-1,0,---,1), H=H" >0,
where by = h,, =1/2and h; = 1, for 1 < j < n. Determine the corresponding matrix operator Q).
9. Consider the IVP

ou ou
— —q— — >
5 aax,xe( 00,00), t >0, a > 0, (6a)
u(z,0) = f(z), (6b)

Verify that u(z,t) = f(x — at) solves the IVP.

10. Consider the IBVP
ou ou

2 = >

9 aax,xe(O,oo),t_O,a>0, (7a)
u(z,0) =0, z € Q, (7b)
u(0,t) = g(t), t >0, (70)

with compatible data, that is g(0) = u(0,0) = 0. Show that

0, else

solves the IBVP.
11. Consider the linear differential operator
0 0%u ou
P(m)u:aaﬁ—t—bax—kcu, r €R,

for real constants ¢ > 0, b, ¢ € R with the decay condition |u| — 0 at |z| — co. Show that the
operator P is semi-bounded, that is (u, Pu) < a.||u||? for some o, € R.

12. Consider the IVP

D -~ o _ Ju Ou B N
ot P(ax) u, P(ax)u aaxQ +bax+cu, LL’E( 00’00)7 t707 (83)

u(z,0) =e*®  keR. (8b)
Determine w € C so that u(x,t) = e+ is a solution to the IVP.

13. Consider the IVP

ou 0
i P ((%) u, x € (—00,00), t >0, (9a)
u(z,0) = f(z). (9b)
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Show that if the differential operator P is semi-bounded, that is (u, Pu) < a.|lu||?, then
lu@®)ll < e |Ifll, Vt=0.

14. Consider the semi-discrete approximation of the IVP

(fl—ltl =Pu, t>0, u(t)eR” (10a)
u(0) =1, (10b)

where P & P (9/0x) approximates the spatial differential operator on a grid and the time derivative
is left continuous. Show that the if the discrete spatial differential operator P is semi-bounded in a
discrete scalar product, that is (u, Pu)g < ag||ul|? then

[u(®)a < e*||f|m, Vt>0.

15. Let zg, x1, 22 € R, xg # x2. Show that there exists a unique cubic polynomial p such that

p(zo) = f(®o), P'(x1)=f'(x1), p"(x1)=f"(x1), plz2)= f(z2),
where f is a given function.
16. Let us consider the first order ODE

dy
7 f(t,y), t>0,

y(0)=¢, ceR.

In order to numerically solve this ODE, we introduce a discretisation ¢,, 41 = t,, + h, where i > 0 is
the step size, tg = 0, n = 1, 2, .. .. We compute the numerical approximation for this ODE using the
following recurrence formula:

h
5(f(tn-i-lvyn+hf(tnayn))+f(tnayn))7 Y =¢ n= 1727"" (11)

Here, y,, is the numerical approximation of the solution y at t = ¢, thatis y,, & y(t,).

Yn4+1 = Yn +

* Suppose that f(¢,y) = Ay, where X is a complex constant such that Re(A) < 0. Show that for
allm > 1, we have
Yn = P"Y0,
where p =1+ hA + % Using this result, derive a condition on the step size & such that the
numerical approximation (11) is stable, that is |y,,| < oo for all n. > 0.
* Write a code to implement (11). Test your code with f(¢,y) = Ay, where yo = 10 and A = —1
is a constant. Run your code until the final time ¢ = 10, with various step sizes and compare

your results with the analytical solution y(t) = yoe . Try to see what happens if the step size
violates the condition that you have derived previously.

17. Consider the iteration equation
bt = Au®, uw=f, k>0, ufeR” AeR™"

What is the necessary condition on the iteration matrix A so that if ||| < co then ||u*| < oo for
k — o0?
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Practice questions

The following questions will help you prepare and assess your readiness for the course.

Let u,v € C*(Q), and define the standard Ls-scalar product and norm

(v,u) = /qu dz, ||ul|® = (u,u).

1. Let Q = [0, 1]. Show that

d d
(u, dj;) + (dz,v> = u(1)v(1) — u(0)v(0).
Sol: Applying the integration-by-parts formula to the first term gives
dv n du /1 dvdJr/‘ldu d
U, — -,V = U— axr — v ar
"dzx dz’ 0 dw o dx

1 1
1 du / du
- —vdr+ | —uvd
vl /0 el ; ks

= u(1)v(1) — u(0)v(0).

Discretise the interval £ = [0, 1] uniformly into n grid points with z; = (j — 1)Axz, j = 1,2,...,n,
Az = 1/(n — 1). Denote u; = u(x;) with u = (ur,uz,...,u,)” € R" being the restriction
of the smooth function v : R — R on the grid z;. We introduce the diagonal matrix operators
I, = Axzdiag([1,1,---,1]) and H = Az diag([h1, ha,- - - , hy]), where h; > 0 are real positive
weights independent of Az. Define the discrete scalar products

n n
(v,uw)g = v Hu = AxZujvjhj, (v,w)y, = vIiTu = AxZujvj. (D
Jj=1 j=1
2. Show that the discrete norms [[ullf, = (u,u)r,, [[ullf; = (u, u)m, are equivalent.

Sol: These two discrete norms are equivalent if there exists two positive real constants « > 0 and
[ > 0 such that

allully, < flulla < B, )

From the definition of the discrete norms, we have
n n
|ullf = (u,u)g = A:L'Zhju? < (mlax hi) AxZu? = (mlax hi) HuH%h. 3)
j=1 j=1

Similarly,
Jullf = (minh) fju

T, 4)
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Therefore,
(min k) lhallf, < [l < (maxh ) full, 5)
and hence the norms are equivalent with &« = 4/ (min; h;) > 0 and 8 = \/(max; h;) > 0.
Exactness of quadrature rules for polynomials. Let 1 := (1,1,...,1)7 € R", then
1
1,u)pg ~ / udx. (6)
0

3. For a monomial u(z) = 2 with p € N. Show thatif h; = h, =1/2and h; = 1,forl1 < j <n
and p = 1, then (1,u)y = f01 u dx for all n > 2.

Sol: From the definition of the discrete scalar products, we have
(1,u)g = 1"Hu = ZA:L'hjuj = A:CZ hju(z;) = sz hjx;
j=1 Jj=1 j=1

n—1

= AxQZ(j —1)h; = Az? Z(j -1)+ %(n— 1)

Jj=2

_Ag? Z_:j+ %(n— | = Az (;(n CDn-2)+ %(n— 1))

1 1 !
= §Aa:2(n —1)? = 3 :/0 udz.

[Think about: Can we construct composite quadrature rules such that (1, u)g = fol u dz for finite n
and fixed p > 17]

4. Let H be defined by hqy = h,, = 17/48, ho = hy,—1 = 59/48, hg = h,_o = 43/48, hy =
hp—s = 49/48, and h; = 1, for 4 < j < n — 3. Write a simple Python code to verify that

(1,u)g = fol wdx forn > 8, with u(z) = 2P and 0 < p < 3.
Sol: See attached Jupyter Notebook
Summation-by-parts principle. Let D € R™*"™ denote a discrete derivative operator on the grid, that
is (Du); ~ 0u/0x| =y,
5. Show that if D € R™*"™ satisfies

D:H_lQa Q+QT:B: dlag([_170a 71]), H:HT>O7 (7)
then

(v,Du)g + (Dv,u)g = u, v, — u101.

Sol: Consider
(v,Du)g + (Dv,uw)y = v (HD)u + v (HD)"u.
Note that HD = Q and Q + QT = B := diag([—1,0, - ,1]), then

(v, Du)pg + (Dv,u)p = vIi(Q+ QT u = v Bu = u,v, — uv;.

Let D € R™*" be defined by

uzA—u17 ] — 1
(Du)j = ¢ =H9=L 1<j<n ;. (8)
Up —Un—1 .
T Az 0 JTM

6. Show that for a sufficiently smooth function v : R — R the discrete derivative operator (Du);
defined in (8) can be written as

du
(Du)j = %'w:xj + Tja 9)
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where T is the truncation error. Determine the truncation error T; for all 7 = 1,2,...n. Discuss
what happens to the truncation error as Az — 0.

Sol: We use Taylor expansions

du  Az? Pu(z) Az du(x)
u(m+A:r):u(x)+Ax%+ o T e s T
du  Az? Pu(z) Ax® du(x)
u(r — Azx) = u(zx) — Ax% + I T 6 4 4

then we have
u(z +Az) —u(z)  du(zx) Az d*u(r)  Az? du(z)

Az dr 2 dz V6 @
u(z + Az) — u(x — Ax) _ du(zx) n Az? d3u(z) L
2Az dx 6 da? ’
u(z) —u(r —Az) du Az d*u(r) N Az? d3u(z)
Az dx 2 da? 6 da®

Taylor remainder theorem gives

uzA—mm — du(z) + Ty, j=1

dz

(Du); = mspmt ) 4T <j<n o,
Unlnoi du((iin) +T,, j=n
where
Gl gy < <a, j=1
T; = szdd;gf)+---71<j<n,xjfléé“ﬁxjﬂ
Az d u(§)

5 T dx2 7I71—1§5§xn7j:n

Note that Ty = O(Az), T,, = O(Az), and T; = O(Az?) for 1 < j < n. Thus we must have
Ar —0 = T; »0forallj=1,2,--- ,n.

7. Write a simple Python code implementing the discrete derivative operator (Du); defined in
(8). Consider u(x) = 2 for z € [0,1] and verify the accuracy of the operator, compare the error
e; = |(Du); — u/(x;)| to the truncation error T}.

Sol: See attached Jupyter Notebook
8. Show that the discrete derivative operator (Du); defined in (8) satisfies (7), that is
D=H'Q, Q+Q"=B:=dag(-1,0,---,1), H=H" >0,
where hy = h,, = 1/2and h; = 1, for 1 < j < n. Determine the corresponding matrix operator Q.

Sol: For simplicity, we consider n = 5. The matrix for the derivative operator D is given by

-1 1 0 0 0 -5 3 0 0 0
1—%0%00 - 0 2 0 0
D:EO—%O%O:H”O—%O%O
0 0 -3 0 3 0 -3 0 3
0 0 0 -1 1 o o o -i1
Q
Then we have
-1 0 0 0 0
0 0000
Q+QT=B=| 0 0 0 0 0 | =diag([-1,0,---,1])
0 00 00
0 0001
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9. Consider the IVP
Ou 0 e ), t>0,a>0 (10a)
I8 2 _ 2
9 ag_, 00,00), t >0, a ,
u(z,0) = f(x), (10b)
Verify that u(z,t) = f(x — at) solves the IVP.
Sol: Clearly, we have u(z,0) = f(x — a(0)) = f(z), which implies that the initial condition is
satisfied. To show that u satisfies the PDE, we compute the first partial derivatives of u. We obtain

ou 0 ,
Frialen (z —at) = —af'(z — at)
and 5 5
e O
9 (x —at) = f'(x — at).
Hence 9 9
8—? Jraa—z = —af'(z — at) + af' (x — at) = 0.
Therefore, u solves the IVP.
10. Consider the IBVP
ou ou
= —q— >
9 aam,xe(o,oo),t_o,a>0, (11a)
u(z,0) =0, z € Q, (11b)

with compatible data, that is g(0) = u(0,0) = 0. Show that
w(z, t) = { gt —x/a), ift—x/a>0 }

0, else
solves the IBVP.
Sol: When = 0, we have t — x/a =t > 0, and hence u(0,t) = ¢(t) for all ¢ > 0. When ¢ = 0, it
is clear that t — x/a = —z/a < 0, which implies u(x,0) = 0. Therefore, u satisfies the initial and

boundary conditions. To show that wu also satisfies the PDE, we compute the first derivatives

8u:{ g (t—z/a), ift—x/a>0 }

ot 0, else
Ou [ —Lg(t—aja), ift—a/a>0
or 0, else ’

We obtain
@—Fa@ _{ git—z/a)—g(t—x/a)=0, ift—x/a>0 }—O.
ot ox 0, else

Thus, u solves the IBVP.

11. Consider the linear differential operator

0 0%u ou
P(ax>u—aax2+bax+cu, r €R,

for real constants a > 0, b, ¢ € R with the decay condition |u| — 0 at |x| — co. Show that the
operator P is semi-bounded, that is (u, Pu) < a.|/ul|? for some a. € R.

Sol: We consider (u, Pu) and use integration by parts, we have

2
(u, Pu) =a (u, g;;) +b <u, g;:) + (u, cu)

[ @ @ _|_( )_|_ @x:m ’
7\ 8z ox vt T Ay

=00

+ b

T=—00

T=—00
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Using the decay conditions to eliminate the boundary terms yields

ou O
(u, Pu) = —a (aj; a“) T e(uu) < e(u,u) = cul®

Therefore

(u, Pu) < acllul?, a.=c

12. Consider the IVP

ou 0 0 0%u ou

P R e = qQ— —_— — >

T P(&C)u, P(8x>u aaxz—kbax—&—cu,ze( 00,00), t >0, (12a)
u(z,0) = e** Lk eR. (12b)

wt+ikx

Determine w € C so that u(z,t) = e is a solution to the IVP.

wt+ikx

Sol: Inserting u(z,t) = e in (12) we have

~

wu = P(ik)u, where P(ik) = —ak® + ibk + c.

To ensure that v satisfies the PDE, We must have w = P(ik). Note that u(z, 0) = e** satisfies the
initial condition.

13. Consider the IVP

ou 0
e :P(E)x> u, ¢ € (—00,00), t >0, (13a)
u(z,0) = f(z). (13b)

Show that if the differential operator P is semi-bounded, that is (u, Pu) < a.||u||?, then
lu@®)ll < e**[Ifll, ¥t=>0.

Sol: We consider

1d 0

gl = (w5 ) = Pu) < ol
and we have

1d d

Sl < aclul® = Ll < acllull
It follows that we have the differential inequality

d
Zpllull = acllul < 0.

We recognize that the left hand side of the inequality is in the form of a first order linear ODE, and
hence we multiply both sides of the inequality by the integrating factor e ~“<*. We obtain

d d
—oct —oct — —oct
emoet Sl = e lafull = 3 (7 ull) <0,

where we have used the product rule. Integrating both sides from 0 to 7" gives
e *Tu(T)|| - u(0)] <0,
which implies
lu(T)]| < e*T
Since T > 0 is arbitrary, we conclude that ||u(t)]| < e®?

£
f|| forall t > 0.

14. Consider the semi-discrete approximation of the IVP

d
d—‘; —Pu, t>0, u(t)eR" (14a)

u(0) = f, (14b)
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where P ~ P (0/0z) approximates the spatial differential operator on a grid and the time derivative
is left continuous. Show that the if the discrete spatial differential operator P is semi-bounded in a
discrete scalar product, that is (u, Pu)g < agl|ul|?; then

[u®)|a < e*|f|la, VE>0.

Sol: The steps are similar as above, the only difference here is that we consider a discrete scalar
product (-, -y and a discrete norm || - || ;1. Again we consider

2l = G e =, P <
and we have
1d
2dt
It follows that we have the differential inequality

d
@HUHH —aglufla <0,

d
lallfy < callullfy <= —llala < adllafa.

which gives
[u(®)llr < e [f]a.

15. Let zg, x1, 22 € R, xg # x2. Show that there exists a unique cubic polynomial p such that

p(@o) = f(zo), P'(z1) = f'(z1), p"(21) = f"(z1), p22) = f(22),
where f is a given function.

Sol: Write the cubic polynomial as p(z) = ax® + bz? + cx + d, where a,b,c,d € R are to be
determined. The first and second derivatives of p are

p'(x) = 3ax® 4+ 2br +¢ and p”(x) = 6ax + 2b
respectively. Hence, the given conditions can be written as the following linear system:
3

v xg  wg f (o)

xo w3 T (72)
(z1)
)

¢
2x1 3x2| |b
f//(./,rl

1
0 2 6x
We need to show that this linear system has a unique solution. To this end, we compute the determinant

Qo

1
1 _ | f
0 f!
0

S

2 3 2 3

1 =z x5 1 T g T

0
1 z9 a5 3 _ 0 zo—x x3—a} a3—x}
det iy 1 op 3a2| | T o T %, 3
0 0 2 6$1 _0 0 2 633‘1
(20 — o 23— x3 13—}
= det 1 211 3x%
L 0 2 6.’E1

where we have used row operations and expanded along the first column. We expand along the first
column again, and we use the fact that x5 — x¢ # 0. We obtain
Ty —mo 23— 23 53— 2}
det 1 211 327
0 2 671

= (w3 — w0) (1227 — 627) — (621 (25 — m9)* — 2(25 — 7))
= (z9 — 10)(62F — 62129 — 62110 + 205 + 22010 + 2272)
)

= (z2 —20)((c1 — 2)* + & + 3)) #0,
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where ¢; = x1 — xg and c; = x5 — x;. Since the determinant is nonzero, the matrix is nonsingular,
and hence there exists a unique solution.

16. Let us consider the first order ODE

dy

— = f(t t>0
dt f(’y)7 — )
y(0)=¢, ceR.

In order to numerically solve this ODE, we introduce a discretisation ¢,, 1 = t,, + h, where h > 0 is

the step size, g = 0, n = 1, 2, .. .. We compute the numerical approximation for this ODE using the
following recurrence formula:
h
Ynt1 = Yn + b) (ftnt1,Un + Aty yn)) + f(tnsyn)) s Yo=c¢, n=12,.... (15)

Here, y,, is the numerical approximation of the solution y at t = ¢, thatis y,, & y(t,).

* Suppose that f(¢,y) = Ay, where X is a complex constant such that Re(\) < 0. Show that for
all n > 1, we have
Yn = P"Yo,
where p =1+ hA + # Using this result, derive a condition on the step size h such that the
numerical approximation (15) is stable, that is |y,,| < oo for all n > 0.

» Write a code to implement (15). Test your code with f(¢,y) = Ay, where yo = 10 and A = —1
is a constant. Run your code until the final time ¢ = 10, with various step sizes and compare
your results with the analytical solution y(t) = yoe . Try to see what happens if the step size
violates the condition that you have derived previously.

Sol:

Since f(t,y) = Ay, we have

f(tnvyn) = /\ynv

f(tn+17 Yn + hf(tn; yn)) = .f(tn+17 Yn + h)\yn) = /\(yn + h/\yn) = >\yn + h)\Qyn
Hence, (15) becomes

h 9 hZ\2
yn+1=yn+§()\yn+h)\yn+/\yn): 14+ hX+ 5 Yn-

Therefore, for all n > 1, we have

h2\?
yn:<1+h)\+ 9 >yn1

2)2 2)2

2 n
h
=<1+h/\+ ) yn—2=~-~=<1+h/\+ ) Yo = p"Yo,

where p(z) =1+ 2z + % and z = h\ € C. To ensure that |y, | is bounded, p must satisfy the
condition |p| < 1. For real A < 0 this implies h < —2/\.

See attached Jupyter Notebook for code.
17. Consider the iteration equation
ubtl = Au*, O =f k>0, ufeR?, AecR™"

What is the necessary condition on the iteration matrix A so that if ||f|| < oo then [[u”| < oo for
k — o0?

Sol: We consider
u' = Au’ = Af, u?=Au' = A%’ = 4%, ..., uf = AFf,
and hence taking the norm of both sides gives
lu®[| = [|A™E(] < [|A* 1]

Note that limy_, o [|A*|| = 00 <= p(A) > 1, where p(A) is the spectral radius of A. Therefore
we must have p(A4) <1
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