High-Order Numerical Methods for Time-Dependent PDEs

Kenneth Duru

ANU
kenneth.duru@anu.edu.au

Kenny Wiratama*

ANU
Kenny.Wiratama@anu.edu.au

Practice questions

The following questions will help you prepare and assess your readiness for the course.
Let $u, v \in C^{\infty}(\Omega)$, and define the standard L_{2}-scalar product and norm

$$
(v, u)=\int_{\Omega} u v d x, \quad\|u\|^{2}=(u, u)
$$

1. Let $\Omega=[0,1]$. Show that

$$
\left(u, \frac{d v}{d x}\right)+\left(\frac{d u}{d x}, v\right)=u(1) v(1)-u(0) v(0)
$$

Discretise the interval $\Omega=[0,1]$ uniformly into n grid points with $x_{j}=(j-1) \Delta x, j=1,2, \ldots, n$, $\Delta x=1 /(n-1)$. Denote $u_{j}=u\left(x_{j}\right)$ with $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{T} \in \mathbb{R}^{n}$ being the restriction of the smooth function $u: \mathbb{R} \rightarrow \mathbb{R}$ on the grid x_{j}. We introduce the diagonal matrix operators $\mathbf{I}_{h}=\Delta x \operatorname{diag}([1,1, \cdots, 1])$ and $\mathbf{H}=\Delta x \operatorname{diag}\left(\left[h_{1}, h_{2}, \cdots, h_{n}\right]\right)$, where $h_{j}>0$ are real positive weights independent of Δx. Define the discrete scalar products

$$
\begin{equation*}
\langle\mathbf{v}, \mathbf{u}\rangle_{\mathbf{H}}:=\mathbf{v}^{T} \mathbf{H u}=\Delta x \sum_{j=1}^{n} u_{j} v_{j} h_{j}, \quad\langle\mathbf{v}, \mathbf{u}\rangle_{\mathbf{I}_{h}}:=\mathbf{v}^{T} \mathbf{I}_{h} \mathbf{u}=\Delta x \sum_{j=1}^{n} u_{j} v_{j} \tag{1}
\end{equation*}
$$

2. Show that the discrete norms $\|\mathbf{u}\|_{\mathbf{I}_{h}}^{2}=\langle\mathbf{u}, \mathbf{u}\rangle_{\mathbf{I}_{h}},\|\mathbf{u}\|_{\mathbf{H}}^{2}=\langle\mathbf{u}, \mathbf{u}\rangle_{\mathbf{H}}$, are equivalent.

Exactness of quadrature rules for polynomials. Let $1:=(1,1, \ldots, 1)^{T} \in \mathbb{R}^{n}$, then

$$
\begin{equation*}
\langle\mathbf{1}, \mathbf{u}\rangle_{\mathbf{H}} \approx \int_{0}^{1} u d x \tag{2}
\end{equation*}
$$

3. For a monomial $u(x)=x^{p}$ with $p \in \mathbb{N}$. Show that if $h_{1}=h_{n}=1 / 2$ and $h_{j}=1$, for $1<j<n$ and $p=1$, then $\langle\mathbf{1}, \mathbf{u}\rangle_{\mathbf{H}}=\int_{0}^{1} u d x$ for all $n \geq 2$.
[Think about: Can we construct composite quadrature rules such that $\langle\mathbf{1}, \mathbf{u}\rangle_{\mathbf{H}}=\int_{0}^{1} u d x$ for finite n and fixed $p>1$?]
4. Let \mathbf{H} be defined by $h_{1}=h_{n}=17 / 48, h_{2}=h_{n-1}=59 / 48, h_{3}=h_{n-2}=43 / 48, h_{4}=$ $h_{n-3}=49 / 48$, and $h_{j}=1$, for $4<j<n-3$. Write a simple Python code to verify that $\langle\mathbf{1}, \mathbf{u}\rangle_{\mathbf{H}}=\int_{0}^{1} u d x$ for $n \geq 8$, with $u(x)=x^{p}$ and $0 \leq p \leq 3$.
Summation-by-parts principle. Let $D \in \mathbb{R}^{n \times n}$ denote a discrete derivative operator on the grid, that is $(D \mathbf{u})_{j} \approx \partial u /\left.\partial x\right|_{x=x_{j}}$.
5. Show that if $D \in \mathbb{R}^{n \times n}$ satisfies

$$
\begin{equation*}
D=\mathbf{H}^{-1} Q, \quad Q+Q^{T}=B:=\operatorname{diag}([-1,0, \cdots, 1]), \quad \mathbf{H}=\mathbf{H}^{T}>0 \tag{3}
\end{equation*}
$$

then

$$
\langle\mathbf{v}, D \mathbf{u}\rangle_{\mathbf{H}}+\langle D \mathbf{v}, \mathbf{u}\rangle_{\mathbf{H}}=u_{n} v_{n}-u_{1} v_{1}
$$

Let $D \in \mathbb{R}^{n \times n}$ be defined by

$$
(D \mathbf{u})_{j}=\left\{\begin{align*}
\frac{u_{2}-u_{1}}{\Delta x_{1}}, & j=1 \tag{4}\\
\frac{u_{j+1}-u_{j-1}}{2 \Delta x}, & 1<j<n \\
\frac{u_{n}-u_{n-1}}{\Delta x}, & j=n
\end{align*}\right\}
$$

6. Show that for a sufficiently smooth function $u: \mathbb{R} \rightarrow \mathbb{R}$ the discrete derivative operator $(D \mathbf{u})_{j}$ defined in (4) can be written as

$$
\begin{equation*}
(D \mathbf{u})_{j}=\left.\frac{d u}{d x}\right|_{x=x_{j}}+\mathbb{T}_{j} \tag{5}
\end{equation*}
$$

where \mathbb{T} is the truncation error. Determine the truncation error \mathbb{T}_{j} for all $j=1,2, \ldots n$. Discuss what happens to the truncation error as $\Delta x \rightarrow 0$.
7. Write a simple Python code implementing the discrete derivative operator $(D \mathbf{u})_{j}$ defined in (4). Consider $u(x)=x^{3}$ for $x \in[0,1]$ and verify the accuracy of the operator, compare the error $e_{j}=\left|(D \mathbf{u})_{j}-u^{\prime}\left(x_{j}\right)\right|$ to the truncation error \mathbb{T}_{j}.
8. Show that the discrete derivative operator $(D \mathbf{u})_{j}$ defined in (4) satisfies (3), that is

$$
D=\mathbf{H}^{-1} Q, \quad Q+Q^{T}=B:=\operatorname{diag}([-1,0, \cdots, 1]), \quad \mathbf{H}=\mathbf{H}^{T}>0
$$

where $h_{1}=h_{n}=1 / 2$ and $h_{j}=1$, for $1<j<n$. Determine the corresponding matrix operator Q.
9. Consider the IVP

$$
\begin{align*}
\frac{\partial u}{\partial t} & =-a \frac{\partial u}{\partial x}, x \in(-\infty, \infty), t \geq 0, a>0 \tag{6a}\\
u(x, 0) & =f(x) \tag{6b}
\end{align*}
$$

Verify that $u(x, t)=f(x-a t)$ solves the IVP.
10. Consider the IBVP

$$
\begin{align*}
\frac{\partial u}{\partial t} & =-a \frac{\partial u}{\partial x}, x \in(0, \infty), t \geq 0, a>0 \tag{7a}\\
u(x, 0) & =0, x \in \Omega \tag{7b}\\
u(0, t) & =g(t), t \geq 0 \tag{7c}
\end{align*}
$$

with compatible data, that is $g(0)=u(0,0)=0$. Show that

$$
u(x, t)=\left\{\begin{array}{cl}
g(t-x / a), & \text { if } t-x / a \geq 0 \\
0, & \text { else }
\end{array}\right\}
$$

solves the IBVP.
11. Consider the linear differential operator

$$
P\left(\frac{\partial}{\partial x}\right) u=a \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial u}{\partial x}+c u, \quad x \in \mathbb{R}
$$

for real constants $a>0, b, c \in \mathbb{R}$ with the decay condition $|u| \rightarrow 0$ at $|x| \rightarrow \infty$. Show that the operator P is semi-bounded, that is $(u, P u) \leq \alpha_{c}\|u\|^{2}$ for some $\alpha_{c} \in \mathbb{R}$.
12. Consider the IVP

$$
\begin{align*}
\frac{\partial u}{\partial t} & =P\left(\frac{\partial}{\partial x}\right) u, \quad P\left(\frac{\partial}{\partial x}\right) u=a \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial u}{\partial x}+c u, x \in(-\infty, \infty), t \geq 0 \tag{8a}\\
u(x, 0) & =e^{i k x}, \quad k \in \mathbb{R} \tag{8b}
\end{align*}
$$

Determine $\omega \in \mathbb{C}$ so that $u(x, t)=e^{\omega t+i k x}$ is a solution to the IVP.
13. Consider the IVP

$$
\begin{align*}
\frac{\partial u}{\partial t} & =P\left(\frac{\partial}{\partial x}\right) u, x \in(-\infty, \infty), t \geq 0 \tag{9a}\\
u(x, 0) & =f(x) \tag{9b}
\end{align*}
$$

Show that if the differential operator P is semi-bounded, that is $(u, P u) \leq \alpha_{c}\|u\|^{2}$, then

$$
\|u(t)\| \leq e^{\alpha_{c} t}\|f\|, \quad \forall t \geq 0
$$

14. Consider the semi-discrete approximation of the IVP

$$
\begin{align*}
\frac{d \mathbf{u}}{d t} & =\mathcal{P} \mathbf{u}, \quad t \geq 0, \quad \mathbf{u}(t) \in \mathbb{R}^{n} \tag{10a}\\
\mathbf{u}(0) & =\mathbf{f} \tag{10b}
\end{align*}
$$

where $\mathcal{P} \approx P(\partial / \partial x)$ approximates the spatial differential operator on a grid and the time derivative is left continuous. Show that the if the discrete spatial differential operator \mathcal{P} is semi-bounded in a discrete scalar product, that is $\langle\mathbf{u}, \mathcal{P} \mathbf{u}\rangle_{\mathbf{H}} \leq \alpha_{d}\|\mathbf{u}\|_{\mathbf{H}}^{2}$ then

$$
\|\mathbf{u}(t)\|_{\mathbf{H}} \leq e^{\alpha_{d} t}\|\mathbf{f}\|_{\mathbf{H}}, \quad \forall t \geq 0
$$

15. Let $x_{0}, x_{1}, x_{2} \in \mathbb{R}, x_{0} \neq x_{2}$. Show that there exists a unique cubic polynomial p such that

$$
p\left(x_{0}\right)=f\left(x_{0}\right), \quad p^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{1}\right), \quad p^{\prime \prime}\left(x_{1}\right)=f^{\prime \prime}\left(x_{1}\right), \quad p\left(x_{2}\right)=f\left(x_{2}\right)
$$

where f is a given function.
16. Let us consider the first order ODE

$$
\begin{aligned}
& \frac{d y}{d t}=f(t, y), \quad t \geq 0 \\
& y(0)=c, \quad c \in \mathbb{R}
\end{aligned}
$$

In order to numerically solve this ODE, we introduce a discretisation $t_{n+1}=t_{n}+h$, where $h>0$ is the step size, $t_{0}=0, n=1,2, \ldots$. We compute the numerical approximation for this ODE using the following recurrence formula:

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{h}{2}\left(f\left(t_{n+1}, y_{n}+h f\left(t_{n}, y_{n}\right)\right)+f\left(t_{n}, y_{n}\right)\right), \quad y_{0}=c, \quad n=1,2, \ldots \tag{11}
\end{equation*}
$$

Here, y_{n} is the numerical approximation of the solution y at $t=t_{n}$, that is $y_{n} \approx y\left(t_{n}\right)$.

- Suppose that $f(t, y)=\lambda y$, where λ is a complex constant such that $\operatorname{Re}(\lambda)<0$. Show that for all $n \geq 1$, we have

$$
y_{n}=\rho^{n} y_{0}
$$

where $\rho=1+h \lambda+\frac{h^{2} \lambda^{2}}{2}$. Using this result, derive a condition on the step size h such that the numerical approximation (11) is stable, that is $\left|y_{n}\right|<\infty$ for all $n \geq 0$.

- Write a code to implement (11). Test your code with $f(t, y)=\lambda y$, where $y_{0}=10$ and $\lambda=-1$ is a constant. Run your code until the final time $t=10$, with various step sizes and compare your results with the analytical solution $y(t)=y_{0} e^{\lambda t}$. Try to see what happens if the step size violates the condition that you have derived previously.

17. Consider the iteration equation

$$
\mathbf{u}^{k+1}=A \mathbf{u}^{k}, \quad \mathbf{u}^{0}=\mathbf{f}, \quad k \geq 0, \quad \mathbf{u}^{k} \in \mathbb{R}^{n}, \quad A \in \mathbb{R}^{n \times n}
$$

What is the necessary condition on the iteration matrix A so that if $\|\mathbf{f}\|<\infty$ then $\left\|\mathbf{u}^{k}\right\|<\infty$ for $k \rightarrow \infty$?

High-Order Numerical Methods for Time-Dependent PDEs

Kenneth Duru

ANU
kenneth.duru@anu.edu.au

Kenny Wiratama*

ANU
Kenny.Wiratama@anu.edu.au

Practice questions

The following questions will help you prepare and assess your readiness for the course.
Let $u, v \in C^{\infty}(\Omega)$, and define the standard L_{2}-scalar product and norm

$$
(v, u)=\int_{\Omega} u v d x, \quad\|u\|^{2}=(u, u)
$$

1. Let $\Omega=[0,1]$. Show that

$$
\left(u, \frac{d v}{d x}\right)+\left(\frac{d u}{d x}, v\right)=u(1) v(1)-u(0) v(0)
$$

Sol: Applying the integration-by-parts formula to the first term gives

$$
\begin{aligned}
\left(u, \frac{d v}{d x}\right)+\left(\frac{d u}{d x}, v\right) & =\int_{0}^{1} u \frac{d v}{d x} d x+\int_{0}^{1} \frac{d u}{d x} v d x \\
& =\left.u v\right|_{0} ^{1}-\int_{0}^{1} \frac{d u}{d x} v d x+\int_{0}^{1} \frac{d u}{d x} v d x \\
& =u(1) v(1)-u(0) v(0)
\end{aligned}
$$

Discretise the interval $\Omega=[0,1]$ uniformly into n grid points with $x_{j}=(j-1) \Delta x, j=1,2, \ldots, n$, $\Delta x=1 /(n-1)$. Denote $u_{j}=u\left(x_{j}\right)$ with $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{T} \in \mathbb{R}^{n}$ being the restriction of the smooth function $u: \mathbb{R} \rightarrow \mathbb{R}$ on the grid x_{j}. We introduce the diagonal matrix operators $\mathbf{I}_{h}=\Delta x \operatorname{diag}([1,1, \cdots, 1])$ and $\mathbf{H}=\Delta x \operatorname{diag}\left(\left[h_{1}, h_{2}, \cdots, h_{n}\right]\right)$, where $h_{j}>0$ are real positive weights independent of Δx. Define the discrete scalar products

$$
\begin{equation*}
\langle\mathbf{v}, \mathbf{u}\rangle_{\mathbf{H}}:=\mathbf{v}^{T} \mathbf{H u}=\Delta x \sum_{j=1}^{n} u_{j} v_{j} h_{j}, \quad\langle\mathbf{v}, \mathbf{u}\rangle_{\mathbf{I}_{h}}:=\mathbf{v}^{T} \mathbf{I}_{h} \mathbf{u}=\Delta x \sum_{j=1}^{n} u_{j} v_{j} \tag{1}
\end{equation*}
$$

2. Show that the discrete norms $\|\mathbf{u}\|_{\mathbf{I}_{h}}^{2}=\langle\mathbf{u}, \mathbf{u}\rangle_{\mathbf{I}_{h}},\|\mathbf{u}\|_{\mathbf{H}}^{2}=\langle\mathbf{u}, \mathbf{u}\rangle_{\mathbf{H}}$, are equivalent.

Sol: These two discrete norms are equivalent if there exists two positive real constants $\alpha>0$ and $\beta>0$ such that

$$
\begin{equation*}
\alpha\|\mathbf{u}\|_{\mathbf{I}_{h}} \leq\|\mathbf{u}\|_{\mathbf{H}} \leq \beta\|\mathbf{u}\|_{\mathbf{I}_{h}} \tag{2}
\end{equation*}
$$

From the definition of the discrete norms, we have

$$
\begin{equation*}
\|\mathbf{u}\|_{\mathbf{H}}^{2}=\langle\mathbf{u}, \mathbf{u}\rangle_{\mathbf{H}}=\Delta x \sum_{j=1}^{n} h_{j} u_{j}^{2} \leq\left(\max _{i} h_{i}\right) \Delta x \sum_{j=1}^{n} u_{j}^{2}=\left(\max _{i} h_{i}\right)\|\mathbf{u}\|_{\mathbf{I}_{h}}^{2} \tag{3}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\|\mathbf{u}\|_{\mathbf{H}}^{2} \geq\left(\min _{i} h_{i}\right)\|\mathbf{u}\|_{\mathbf{I}_{h}}^{2} \tag{4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left(\min _{i} h_{i}\right)\|\mathbf{u}\|_{\mathbf{I}_{h}}^{2} \leq\|\mathbf{u}\|_{\mathbf{H}}^{2} \leq\left(\max _{i} h_{i}\right)\|\mathbf{u}\|_{\mathbf{I}_{h}}^{2}, \tag{5}
\end{equation*}
$$

and hence the norms are equivalent with $\alpha=\sqrt{\left(\min _{i} h_{i}\right)}>0$ and $\beta=\sqrt{\left(\max _{i} h_{i}\right)}>0$.
Exactness of quadrature rules for polynomials. Let $1:=(1,1, \ldots, 1)^{T} \in \mathbb{R}^{n}$, then

$$
\begin{equation*}
\langle\mathbf{1}, \mathbf{u}\rangle_{\mathbf{H}} \approx \int_{0}^{1} u d x \tag{6}
\end{equation*}
$$

3. For a monomial $u(x)=x^{p}$ with $p \in \mathbb{N}$. Show that if $h_{1}=h_{n}=1 / 2$ and $h_{j}=1$, for $1<j<n$ and $p=1$, then $\langle\mathbf{1}, \mathbf{u}\rangle_{\mathbf{H}}=\int_{0}^{1} u d x$ for all $n \geq 2$.
Sol: From the definition of the discrete scalar products, we have

$$
\begin{aligned}
\langle\mathbf{1}, \mathbf{u}\rangle_{\mathbf{H}}=\mathbf{1}^{T} \mathbf{H} \mathbf{u} & =\sum_{j=1}^{n} \Delta x h_{j} u_{j}=\Delta x \sum_{j=1}^{n} h_{j} u\left(x_{j}\right)=\Delta x \sum_{j=1}^{n} h_{j} x_{j} \\
& =\Delta x^{2} \sum_{j=1}^{n}(j-1) h_{j}=\Delta x^{2}\left(\sum_{j=2}^{n-1}(j-1)+\frac{1}{2}(n-1)\right) \\
& =\Delta x^{2}\left(\sum_{j=1}^{n-2} j+\frac{1}{2}(n-1)\right)=\Delta x^{2}\left(\frac{1}{2}(n-1)(n-2)+\frac{1}{2}(n-1)\right) \\
& =\frac{1}{2} \Delta x^{2}(n-1)^{2}=\frac{1}{2}=\int_{0}^{1} u d x .
\end{aligned}
$$

[Think about: Can we construct composite quadrature rules such that $\langle\mathbf{1}, \mathbf{u}\rangle_{\mathbf{H}}=\int_{0}^{1} u d x$ for finite n and fixed $p>1$?]
4. Let \mathbf{H} be defined by $h_{1}=h_{n}=17 / 48, h_{2}=h_{n-1}=59 / 48, h_{3}=h_{n-2}=43 / 48, h_{4}=$ $h_{n-3}=49 / 48$, and $h_{j}=1$, for $4<j<n-3$. Write a simple Python code to verify that $\langle\mathbf{1}, \mathbf{u}\rangle_{\mathbf{H}}=\int_{0}^{1} u d x$ for $n \geq 8$, with $u(x)=x^{p}$ and $0 \leq p \leq 3$.
Sol: See attached Jupyter Notebook
Summation-by-parts principle. Let $D \in \mathbb{R}^{n \times n}$ denote a discrete derivative operator on the grid, that is $(D \mathbf{u})_{j} \approx \partial u /\left.\partial x\right|_{x=x_{j}}$.
5. Show that if $D \in \mathbb{R}^{n \times n}$ satisfies

$$
\begin{equation*}
D=\mathbf{H}^{-1} Q, \quad Q+Q^{T}=B:=\operatorname{diag}([-1,0, \cdots, 1]), \quad \mathbf{H}=\mathbf{H}^{T}>0 \tag{7}
\end{equation*}
$$

then

$$
\langle\mathbf{v}, D \mathbf{u}\rangle_{\mathbf{H}}+\langle D \mathbf{v}, \mathbf{u}\rangle_{\mathbf{H}}=u_{n} v_{n}-u_{1} v_{1} .
$$

Sol: Consider

$$
\langle\mathbf{v}, D \mathbf{u}\rangle_{\mathbf{H}}+\langle D \mathbf{v}, \mathbf{u}\rangle_{\mathbf{H}}=\mathbf{v}^{T}(\mathbf{H} D) \mathbf{u}+\mathbf{v}^{T}(\mathbf{H} D)^{T} \mathbf{u} .
$$

Note that $\mathbf{H} D=Q$ and $Q+Q^{T}=B:=\operatorname{diag}([-1,0, \cdots, 1])$, then

$$
\langle\mathbf{v}, D \mathbf{u}\rangle_{\mathbf{H}}+\langle D \mathbf{v}, \mathbf{u}\rangle_{\mathbf{H}}=\mathbf{v}^{T}\left(Q+Q^{T}\right) \mathbf{u}=\mathbf{v}^{T} B \mathbf{u}=u_{n} v_{n}-u_{1} v_{1} .
$$

Let $D \in \mathbb{R}^{n \times n}$ be defined by

$$
(D \mathbf{u})_{j}=\left\{\begin{align*}
\frac{u_{2}-u_{1}}{\Delta x}, & j=1 \tag{8}\\
\frac{u_{j+1}-u_{j-1}}{2 \Delta x}, & 1<j<n \\
\frac{u_{n}-u_{n-1}}{\Delta x}, & j=n
\end{align*}\right\} .
$$

6. Show that for a sufficiently smooth function $u: \mathbb{R} \rightarrow \mathbb{R}$ the discrete derivative operator $(D \mathbf{u})_{j}$ defined in (8) can be written as

$$
\begin{equation*}
(D \mathbf{u})_{j}=\left.\frac{d u}{d x}\right|_{x=x_{j}}+\mathbb{T}_{j} \tag{9}
\end{equation*}
$$

where \mathbb{T} is the truncation error. Determine the truncation error \mathbb{T}_{j} for all $j=1,2, \ldots n$. Discuss what happens to the truncation error as $\Delta x \rightarrow 0$.

Sol: We use Taylor expansions

$$
\begin{aligned}
& u(x+\Delta x)=u(x)+\Delta x \frac{d u}{d x}+\frac{\Delta x^{2}}{2} \frac{d^{2} u(x)}{d x^{2}}+\frac{\Delta x^{3}}{6} \frac{d^{3} u(x)}{d x^{3}}+\cdots, \\
& u(x-\Delta x)=u(x)-\Delta x \frac{d u}{d x}+\frac{\Delta x^{2}}{2} \frac{d^{2} u(x)}{d x^{2}}-\frac{\Delta x^{3}}{6} \frac{d^{3} u(x)}{d x^{3}}+\cdots,
\end{aligned}
$$

then we have

$$
\begin{aligned}
\frac{u(x+\Delta x)-u(x)}{\Delta x} & =\frac{d u(x)}{d x}+\frac{\Delta x}{2} \frac{d^{2} u(x)}{d x^{2}}+\frac{\Delta x^{2}}{6} \frac{d^{3} u(x)}{d x^{3}}+\cdots, \\
\frac{u(x+\Delta x)-u(x-\Delta x)}{2 \Delta x} & =\frac{d u(x)}{d x}+\frac{\Delta x^{2}}{6} \frac{d^{3} u(x)}{d x^{3}}+\cdots, \\
\frac{u(x)-u(x-\Delta x)}{\Delta x} & =\frac{d u}{d x}-\frac{\Delta x}{2} \frac{d^{2} u(x)}{d x^{2}}+\frac{\Delta x^{2}}{6} \frac{d^{3} u(x)}{d x^{3}}+\cdots .
\end{aligned}
$$

Taylor remainder theorem gives

$$
(D \mathbf{u})_{j}=\left\{\begin{aligned}
\frac{u_{2}-u_{1}}{-\Delta x} & =\frac{d u\left(x_{1}\right)}{d x}+\mathbb{T}_{1}, j=1 \\
\frac{u_{j+1}-u_{j-1}}{2 x} & =\frac{d u\left(x_{j}\right)}{d x}+\mathbb{T}_{j}, 1<j<n \\
\frac{u_{n}-u_{n-1}}{\Delta x} & =\frac{d u\left(x_{n}\right)}{d x}+\mathbb{T}_{n}, j=n
\end{aligned}\right\}
$$

where

$$
\mathbb{T}_{j}=\left\{\begin{array}{l}
\frac{\Delta x}{2} \frac{d^{2} u(\xi)}{d x^{2}}, x_{1} \leq \xi \leq x_{2}, j=1 \\
\frac{\Delta x^{2}}{6} \frac{d^{3} u(\xi)}{d x^{3}}+\cdots, 1<j<n, x_{j-1} \leq \xi \leq x_{j+1} \\
-\frac{\Delta x}{2} \frac{d^{2} u(\xi)}{d x^{2}}, x_{n-1} \leq \xi \leq x_{n}, j=n
\end{array}\right\} .
$$

Note that $\mathbb{T}_{1}=O(\Delta x), \mathbb{T}_{n}=O(\Delta x)$, and $\mathbb{T}_{j}=O\left(\Delta x^{2}\right)$ for $1<j<n$. Thus we must have $\Delta x \rightarrow 0 \Longrightarrow \mathbb{T}_{j} \rightarrow 0$ for all $j=1,2, \cdots, n$.
7. Write a simple Python code implementing the discrete derivative operator $(D \mathbf{u})_{j}$ defined in (8). Consider $u(x)=x^{3}$ for $x \in[0,1]$ and verify the accuracy of the operator, compare the error $e_{j}=\left|(D \mathbf{u})_{j}-u^{\prime}\left(x_{j}\right)\right|$ to the truncation error \mathbb{T}_{j}.

Sol: See attached Jupyter Notebook

8. Show that the discrete derivative operator $(D \mathbf{u})_{j}$ defined in (8) satisfies (7), that is

$$
D=\mathbf{H}^{-1} Q, \quad Q+Q^{T}=B:=\operatorname{diag}([-1,0, \cdots, 1]), \quad \mathbf{H}=\mathbf{H}^{T}>0
$$

where $h_{1}=h_{n}=1 / 2$ and $h_{j}=1$, for $1<j<n$. Determine the corresponding matrix operator Q.
Sol: For simplicity, we consider $n=5$. The matrix for the derivative operator D is given by

$$
D=\frac{1}{\Delta x}\left(\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & -1 & 1
\end{array}\right)=\mathbf{H}^{-1} \underbrace{\left(\begin{array}{ccccc}
-\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2}
\end{array}\right)}_{Q} .
$$

Then we have

$$
Q+Q^{T}=B=\left(\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)=\operatorname{diag}([-1,0, \cdots, 1])
$$

9. Consider the IVP

$$
\begin{align*}
\frac{\partial u}{\partial t} & =-a \frac{\partial u}{\partial x}, x \in(-\infty, \infty), t \geq 0, a>0 \tag{10a}\\
u(x, 0) & =f(x) \tag{10b}
\end{align*}
$$

Verify that $u(x, t)=f(x-a t)$ solves the IVP.
Sol: Clearly, we have $u(x, 0)=f(x-a(0))=f(x)$, which implies that the initial condition is satisfied. To show that u satisfies the PDE, we compute the first partial derivatives of u. We obtain

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial t} f(x-a t)=-a f^{\prime}(x-a t)
$$

and

$$
\frac{\partial u}{\partial x}=\frac{\partial}{\partial x} f(x-a t)=f^{\prime}(x-a t) .
$$

Hence

$$
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=-a f^{\prime}(x-a t)+a f^{\prime}(x-a t)=0 .
$$

Therefore, u solves the IVP.
10. Consider the IBVP

$$
\begin{align*}
\frac{\partial u}{\partial t} & =-a \frac{\partial u}{\partial x}, x \in(0, \infty), t \geq 0, a>0 \tag{11a}\\
u(x, 0) & =0, x \in \Omega \tag{11b}\\
u(0, t) & =g(t), t \geq 0 \tag{11c}
\end{align*}
$$

with compatible data, that is $g(0)=u(0,0)=0$. Show that

$$
u(x, t)=\left\{\begin{array}{cl}
g(t-x / a), & \text { if } t-x / a \geq 0 \\
0, & \text { else }
\end{array}\right\} .
$$

solves the IBVP.
Sol: When $x=0$, we have $t-x / a=t \geq 0$, and hence $u(0, t)=g(t)$ for all $t \geq 0$. When $t=0$, it is clear that $t-x / a=-x / a<0$, which implies $u(x, 0)=0$. Therefore, u satisfies the initial and boundary conditions. To show that u also satisfies the PDE, we compute the first derivatives

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\left\{\begin{array}{cl}
g^{\prime}(t-x / a), & \text { if } t-x / a \geq 0 \\
0, & \text { else }
\end{array}\right\} \\
\frac{\partial u}{\partial x}=\left\{\begin{array}{cl}
-\frac{1}{a} g^{\prime}(t-x / a), & \text { if } t-x / a \geq 0 \\
0, & \text { else }
\end{array}\right\} .
\end{gathered}
$$

We obtain

$$
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}=\left\{\begin{array}{cc}
g^{\prime}(t-x / a)-g^{\prime}(t-x / a)=0, & \text { if } t-x / a \geq 0 \\
0, & \text { else }
\end{array}\right\}=0 .
$$

Thus, u solves the IBVP.

11. Consider the linear differential operator

$$
P\left(\frac{\partial}{\partial x}\right) u=a \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial u}{\partial x}+c u, \quad x \in \mathbb{R}
$$

for real constants $a>0, b, c \in \mathbb{R}$ with the decay condition $|u| \rightarrow 0$ at $|x| \rightarrow \infty$. Show that the operator P is semi-bounded, that is $(u, P u) \leq \alpha_{c}\|u\|^{2}$ for some $\alpha_{c} \in \mathbb{R}$.
Sol: We consider $(u, P u)$ and use integration by parts, we have

$$
\begin{aligned}
(u, P u) & =a\left(u, \frac{\partial^{2} u}{\partial x^{2}}\right)+b\left(u, \frac{\partial u}{\partial x}\right)+(u, c u) \\
& =-a\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial x}\right)+(u, c u)+\left.a u \frac{\partial u}{\partial x}\right|_{x=-\infty} ^{x=\infty}+\left.b \frac{u^{2}}{2}\right|_{x=-\infty} ^{x=\infty}
\end{aligned}
$$

Using the decay conditions to eliminate the boundary terms yields

$$
(u, P u)=-a\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial x}\right)+c(u, u) \leq c(u, u)=c\|u\|^{2} .
$$

Therefore

$$
(u, P u) \leq \alpha_{c}\|u\|^{2}, \quad \alpha_{c}=c
$$

12. Consider the IVP

$$
\begin{align*}
\frac{\partial u}{\partial t} & =P\left(\frac{\partial}{\partial x}\right) u, \quad P\left(\frac{\partial}{\partial x}\right) u=a \frac{\partial^{2} u}{\partial x^{2}}+b \frac{\partial u}{\partial x}+c u, x \in(-\infty, \infty), t \geq 0, \tag{12a}\\
u(x, 0) & =e^{i k x}, \quad k \in \mathbb{R} . \tag{12b}
\end{align*}
$$

Determine $\omega \in \mathbb{C}$ so that $u(x, t)=e^{\omega t+i k x}$ is a solution to the IVP.
Sol: Inserting $u(x, t)=e^{\omega t+i k x}$ in (12) we have

$$
\omega u=\widehat{P}(i k) u, \quad \text { where } \widehat{P}(i k)=-a k^{2}+i b k+c .
$$

To ensure that u satisfies the PDE, We must have $\omega=\widehat{P}(i k)$. Note that $u(x, 0)=e^{i k x}$ satisfies the initial condition.
13. Consider the IVP

$$
\begin{align*}
\frac{\partial u}{\partial t} & =P\left(\frac{\partial}{\partial x}\right) u, x \in(-\infty, \infty), t \geq 0 \tag{13a}\\
u(x, 0) & =f(x) \tag{13b}
\end{align*}
$$

Show that if the differential operator P is semi-bounded, that is $(u, P u) \leq \alpha_{c}\|u\|^{2}$, then

$$
\|u(t)\| \leq e^{\alpha_{c} t}\|f\|, \quad \forall t \geq 0
$$

Sol: We consider

$$
\frac{1}{2} \frac{d}{d t}\|u\|^{2}=\left(u, \frac{\partial u}{\partial t}\right)=(u, P u) \leq \alpha_{c}\|u\|^{2}
$$

and we have

$$
\frac{1}{2} \frac{d}{d t}\|u\|^{2} \leq \alpha_{c}\|u\|^{2} \Longleftrightarrow \frac{d}{d t}\|u\| \leq \alpha_{c}\|u\|
$$

It follows that we have the differential inequality

$$
\frac{d}{d t}\|u\|-\alpha_{c}\|u\| \leq 0
$$

We recognize that the left hand side of the inequality is in the form of a first order linear ODE, and hence we multiply both sides of the inequality by the integrating factor $e^{-\alpha_{c} t}$. We obtain

$$
e^{-\alpha_{c} t} \frac{d}{d t}\|u\|-e^{-\alpha_{c} t} \alpha_{c}\|u\|=\frac{d}{d t}\left(e^{-\alpha_{c} t}\|u\|\right) \leq 0
$$

where we have used the product rule. Integrating both sides from 0 to T gives

$$
e^{-\alpha_{c} T}\|u(T)\|-\|u(0)\| \leq 0
$$

which implies

$$
\|u(T)\| \leq e^{\alpha_{c} T}\|f\|
$$

Since $T \geq 0$ is arbitrary, we conclude that $\|u(t)\| \leq e^{\alpha_{c} t}\|f\|$ for all $t \geq 0$.
14. Consider the semi-discrete approximation of the IVP

$$
\begin{align*}
\frac{d \mathbf{u}}{d t} & =\mathcal{P} \mathbf{u}, \quad t \geq 0, \quad \mathbf{u}(t) \in \mathbb{R}^{n} \tag{14a}\\
\mathbf{u}(0) & =\mathbf{f} \tag{14b}
\end{align*}
$$

where $\mathcal{P} \approx P(\partial / \partial x)$ approximates the spatial differential operator on a grid and the time derivative is left continuous. Show that the if the discrete spatial differential operator \mathcal{P} is semi-bounded in a discrete scalar product, that is $\langle\mathbf{u}, \mathcal{P} \mathbf{u}\rangle_{\mathbf{H}} \leq \alpha_{d}\|\mathbf{u}\|_{\mathbf{H}}^{2}$ then

$$
\|\mathbf{u}(t)\|_{\mathbf{H}} \leq e^{\alpha_{d} t}\|\mathbf{f}\|_{\mathbf{H}}, \quad \forall t \geq 0
$$

Sol: The steps are similar as above, the only difference here is that we consider a discrete scalar product $\langle\cdot, \cdot\rangle_{\mathbf{H}}$ and a discrete norm $\|\cdot\|_{\mathbf{H}}$. Again we consider

$$
\frac{1}{2} \frac{d}{d t}\|\mathbf{u}\|_{\mathbf{H}}^{2}=\left\langle u, \frac{d \mathbf{u}}{d t}\right\rangle_{\mathbf{H}}=\langle\mathbf{u}, \mathcal{P} \mathbf{u}\rangle_{\mathbf{H}} \leq \alpha_{d}\|\mathbf{u}\|_{\mathbf{H}}^{2},
$$

and we have

$$
\frac{1}{2} \frac{d}{d t}\|\mathbf{u}\|_{\mathbf{H}}^{2} \leq \alpha_{d}\|\mathbf{u}\|_{\mathbf{H}}^{2} \Longleftrightarrow \frac{d}{d t}\|\mathbf{u}\|_{\mathbf{H}} \leq \alpha_{d}\|\mathbf{u}\|_{\mathbf{H}}
$$

It follows that we have the differential inequality

$$
\frac{d}{d t}\|\mathbf{u}\|_{\mathbf{H}}-\alpha_{d}\|\mathbf{u}\|_{\mathbf{H}} \leq 0
$$

which gives

$$
\|\mathbf{u}(t)\|_{\mathbf{H}} \leq e^{\alpha_{d} t}\|\mathbf{f}\|_{\mathbf{H}} .
$$

15. Let $x_{0}, x_{1}, x_{2} \in \mathbb{R}, x_{0} \neq x_{2}$. Show that there exists a unique cubic polynomial p such that

$$
p\left(x_{0}\right)=f\left(x_{0}\right), \quad p^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{1}\right), \quad p^{\prime \prime}\left(x_{1}\right)=f^{\prime \prime}\left(x_{1}\right), \quad p\left(x_{2}\right)=f\left(x_{2}\right)
$$

where f is a given function.
Sol: Write the cubic polynomial as $p(x)=a x^{3}+b x^{2}+c x+d$, where $a, b, c, d \in \mathbb{R}$ are to be determined. The first and second derivatives of p are

$$
p^{\prime}(x)=3 a x^{2}+2 b x+c \quad \text { and } \quad p^{\prime \prime}(x)=6 a x+2 b
$$

respectively. Hence, the given conditions can be written as the following linear system:

$$
\left[\begin{array}{cccc}
1 & x_{0} & x_{0}^{2} & x_{0}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\
0 & 1 & 2 x_{1} & 3 x_{1}^{2} \\
0 & 0 & 2 & 6 x_{1}
\end{array}\right]\left[\begin{array}{l}
d \\
c \\
b \\
a
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{0}\right) \\
f\left(x_{2}\right) \\
f^{\prime}\left(x_{1}\right) \\
f^{\prime \prime}\left(x_{1}\right)
\end{array}\right] .
$$

We need to show that this linear system has a unique solution. To this end, we compute the determinant

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{cccc}
1 & x_{0} & x_{0}^{2} & x_{0}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\
0 & 1 & 2 x_{1} & 3 x_{1}^{2} \\
0 & 0 & 2 & 6 x_{1}
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cccc}
1 & x_{0} & x_{0}^{2} & x_{0}^{3} \\
0 & x_{2}-x_{0} & x_{2}^{2}-x_{0}^{2} & x_{2}^{3}-x_{0}^{3} \\
0 & 1 & 2 x_{1} & 3 x_{1}^{2} \\
0 & 0 & 2 & 6 x_{1}
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{ccc}
x_{2}-x_{0} & x_{2}^{2}-x_{0}^{2} & x_{2}^{3}-x_{0}^{3} \\
1 & 2 x_{1} & 3 x_{1}^{2} \\
0 & 2 & 6 x_{1}
\end{array}\right]\right)
\end{aligned}
$$

where we have used row operations and expanded along the first column. We expand along the first column again, and we use the fact that $x_{2}-x_{0} \neq 0$. We obtain

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{ccc}
x_{2}-x_{0} & x_{2}^{2}-x_{0}^{2} & x_{2}^{3}-x_{0}^{3} \\
1 & 2 x_{1} & 3 x_{1}^{2} \\
0 & 2 & 6 x_{1}
\end{array}\right]\right) \\
& =\left(x_{2}-x_{0}\right)\left(12 x_{1}^{2}-6 x_{1}^{2}\right)-\left(6 x_{1}\left(x_{2}^{2}-x_{0}\right)^{2}-2\left(x_{2}^{3}-x_{0}^{3}\right)\right) \\
& =\left(x_{2}-x_{0}\right)\left(6 x_{1}^{2}-6 x_{1} x_{2}-6 x_{1} x_{0}+2 x_{2}^{2}+2 x_{2} x_{0}+2 x_{0}^{2}\right) \\
& \left.=\left(x_{2}-x_{0}\right)\left(\left(c_{1}-c_{2}\right)^{2}+c_{1}^{2}+c_{2}^{2}\right)\right) \neq 0,
\end{aligned}
$$

where $c_{1}=x_{1}-x_{0}$ and $c_{2}=x_{2}-x_{1}$. Since the determinant is nonzero, the matrix is nonsingular, and hence there exists a unique solution.
16. Let us consider the first order ODE

$$
\begin{aligned}
& \frac{d y}{d t}=f(t, y), \quad t \geq 0 \\
& y(0)=c, \quad c \in \mathbb{R}
\end{aligned}
$$

In order to numerically solve this ODE, we introduce a discretisation $t_{n+1}=t_{n}+h$, where $h>0$ is the step size, $t_{0}=0, n=1,2, \ldots$ We compute the numerical approximation for this ODE using the following recurrence formula:

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{h}{2}\left(f\left(t_{n+1}, y_{n}+h f\left(t_{n}, y_{n}\right)\right)+f\left(t_{n}, y_{n}\right)\right), \quad y_{0}=c, \quad n=1,2, \ldots \tag{15}
\end{equation*}
$$

Here, y_{n} is the numerical approximation of the solution y at $t=t_{n}$, that is $y_{n} \approx y\left(t_{n}\right)$.

- Suppose that $f(t, y)=\lambda y$, where λ is a complex constant such that $\operatorname{Re}(\lambda)<0$. Show that for all $n \geq 1$, we have

$$
y_{n}=\rho^{n} y_{0},
$$

where $\rho=1+h \lambda+\frac{h^{2} \lambda^{2}}{2}$. Using this result, derive a condition on the step size h such that the numerical approximation (15) is stable, that is $\left|y_{n}\right|<\infty$ for all $n \geq 0$.

- Write a code to implement (15). Test your code with $f(t, y)=\lambda y$, where $y_{0}=10$ and $\lambda=-1$ is a constant. Run your code until the final time $t=10$, with various step sizes and compare your results with the analytical solution $y(t)=y_{0} e^{\lambda t}$. Try to see what happens if the step size violates the condition that you have derived previously.

Sol:

- Since $f(t, y)=\lambda y$, we have

$$
\begin{aligned}
& f\left(t_{n}, y_{n}\right)=\lambda y_{n} \\
& f\left(t_{n+1}, y_{n}+h f\left(t_{n}, y_{n}\right)\right)=f\left(t_{n+1}, y_{n}+h \lambda y_{n}\right)=\lambda\left(y_{n}+h \lambda y_{n}\right)=\lambda y_{n}+h \lambda^{2} y_{n}
\end{aligned}
$$

Hence, (15) becomes

$$
y_{n+1}=y_{n}+\frac{h}{2}\left(\lambda y_{n}+h \lambda^{2} y_{n}+\lambda y_{n}\right)=\left(1+h \lambda+\frac{h^{2} \lambda^{2}}{2}\right) y_{n}
$$

Therefore, for all $n \geq 1$, we have

$$
\begin{aligned}
y_{n} & =\left(1+h \lambda+\frac{h^{2} \lambda^{2}}{2}\right) y_{n-1} \\
& =\left(1+h \lambda+\frac{h^{2} \lambda^{2}}{2}\right)^{2} y_{n-2}=\ldots=\left(1+h \lambda+\frac{h^{2} \lambda^{2}}{2}\right)^{n} y_{0}=\rho^{n} y_{0}
\end{aligned}
$$

where $\rho(z)=1+z+\frac{z^{2}}{2}$ and $z=h \lambda \in \mathbb{C}$. To ensure that $\left|y_{n}\right|$ is bounded, ρ must satisfy the condition $|\rho| \leq 1$. For real $\lambda<0$ this implies $h \leq-2 / \lambda$.

See attached Jupyter Notebook for code.
17. Consider the iteration equation

$$
\mathbf{u}^{k+1}=A \mathbf{u}^{k}, \quad \mathbf{u}^{0}=\mathbf{f}, \quad k \geq 0, \quad \mathbf{u}^{k} \in \mathbb{R}^{n}, \quad A \in \mathbb{R}^{n \times n}
$$

What is the necessary condition on the iteration matrix A so that if $\|\mathbf{f}\|<\infty$ then $\left\|\mathbf{u}^{k}\right\|<\infty$ for $k \rightarrow \infty$?

Sol: We consider

$$
\mathbf{u}^{1}=A \mathbf{u}^{0}=A \mathbf{f}, \quad \mathbf{u}^{2}=A \mathbf{u}^{1}=A^{2} \mathbf{u}^{0}=A^{2} \mathbf{f}, \quad \ldots, \quad \mathbf{u}^{k}=A^{k} \mathbf{f}
$$

and hence taking the norm of both sides gives

$$
\left\|\mathbf{u}^{k}\right\|=\left\|A^{k} \mathbf{f}\right\| \leq\left\|A^{k}\right\|\|\mathbf{f}\|
$$

Note that $\lim _{k \rightarrow \infty}\left\|A^{k}\right\|=\infty \Longleftrightarrow \rho(A)>1$, where $\rho(A)$ is the spectral radius of A. Therefore we must have $\rho(A) \leq 1$.

