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Linear algebra

Linear algebra is the basic language in which we express ideas in convex optimisation and in which
we describe many applications we will see. Fluency in basic manipulations of matrices and vectors
in coordinates is expected, as well as being able to reason more abstractly about linear maps and
related data (eigenvalues, vector spaces associated with linear maps, coordinate transformations,
etc).

1. Let A be an n × n matrix with real entries. Let the columns of A be a1, a2, . . . , an ∈ Rn.
Suppose that a1, a2, . . . , an−1 are linearly independent and an =

∑n−1
i=1 ai.

(a) What is the dimension of the column space (or image) of A, i.e., {Ax : x ∈ Rn}?
(b) What is the dimension of the nullspace (or kernel) of A, i.e., {x ∈ Rn : Ax = 0}? Find

a basis for the nullspace of A.

(c) What is det(A)?

2. An n×n matrix with real entries is symmetric if A> = A, i.e., Aij = Aji for all 1 ≤ i, j ≤ n.
A basic fact about symmetric matrices is that they can be decomposed as A = UΛU>

where Λ is a diagonal matrix with real diagonal entries and U is an orthogonal matrix, i.e.,
U>U = UU> = I.

(a) Let ei be the ith elementary basis vector (i.e., ei is zero, except in the ith entry, where
it takes value 1). Show that Uei is an eigenvector of A. Write down an expression for
the corresponding eigenvalue in terms of the entries of Λ.

(b) Find an expression for tr(A2) in terms of the entries of Λ.

3. If A and B are two n×m matrices, show that tr(A>B) =
∑n

i=1

∑m
j=1AijBij .

Multivariable calculus

4. Let a ∈ Rn be a non-zero vector and let f : Rn → R be defined by

f(x) = exp(a>x) = exp(
∑n

i=1aixi).

(a) Find ∇f(x), the gradient of f at x.

(b) Find Hf (x), the Hessian of f at x.

(c) What is the rank of Hf (x)?

Analysis/point-set topology

We will be using basic language from real analysis and point-set topology to precisely formulate
some of the more subtle aspects of the theory. The following problems check your understanding of
open and closed sets, and the notion of infimum.
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5. Recall that S ⊆ Rn is open (with respect to the Euclidean topology on Rn) if for every x0 ∈ S
there exists ε > 0 such that {x ∈ Rn : ‖x− x0‖ < ε} ⊆ S. A subset S ⊆ Rn is closed (with
respect to the Euclidean topology on Rn) if Rn \S is open. Decide whether the following sets
are open, closed, both open and closed, or neither open nor closed.

(a) S = {(x, y) ∈ R2 : −1 < x ≤ 1, −1 ≤ y ≤ 1}
(b) S = {(x, y) ∈ R2 : −1 ≤ x2 + 2xy − y2 ≤ 0}

6. Recall that for S ⊆ Rn:

• The interior of S is the union of all open subsets of Rn contained in S.

• The closure of S is the intersection of all closed subsets of Rn containing S.

For each of the following subsets of Rn, write down its interior and its closure.

(a) S = {(x, y) ∈ R2 : x+ y = 1}
(b) S = {(x, y) ∈ R2 : (x, y) 6= (0, 0)}

7. Find inf{e−x : x ∈ R}. Is the infimum achieved? (i.e., Does there exist z ∈ R such that
e−z = inf{e−x : x ∈ R}?)
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Solutions:

1. (a) The column space is the span of all of the columns of A. This has dimension at least n−1
since a1, a2, . . . , an−1 are linearly independent. On the other hand, since an =

∑n−1
i=1 ai,

an arbitrary element of the column space can be expressed as

Ax =
n∑

i=1

aixi =
n−1∑
i=1

ai(xi + xn)

and so is an element of the span of a1, a2, . . . , an−1, which has dimension at most n−1.
Therefore the column space has dimension n− 1.

(b) Since the dimension of the column space and the dimension of the nullspace sum to n (the
rank-nullity theorem), it follows that the nullspace has dimension 1. Since an =

∑n−1
i=1 ai

we know that x0 =
[
1 1 · · · 1 −1

]>
is a non-zero element of the nullspace of A.

Since the nullspace is 1-dimensional, x0 forms a basis for the nullspace of A.

(c) Since A does not have full rank, it is not invertible, and so det(A) = 0.

2. (a) To see that Uei is an eigenvector, we check that

AUei = UΛU>Uei = UΛei = U(Λiiei) = ΛiiUei

where the first equality is from the eigendecomposition of A, the second is from the fact
that U is an orthogonal matrix, and the third holds since Λ is diagonal and ei is the ith
elementary basis vector. We also need to verify that Uei is non-zero. To see this we note
that ‖Uei‖2 = e>i U

>Uei = e>i ei = 1 (i.e., ei is non-zero and orthogonal transformations
do not change the Euclidean norm of vectors).

(b) The trace of a square matrix is the sum of its eigenvalues. Since A2 = UΛU>UΛU> =
UΛ2U> and Λ2 is diagonal, with diagonal entries Λ2

ii, it follows (essentially from the
previous problem) that the eigenvalues of A2 are Λ2

i for i = 1, 2, . . . , n. Therefore,
the sum of the eigenvalues of A2 is

∑n
i=1 Λ2

ii. (There are many other ways to do this
problem. Another approach is to use the fact that tr(ABC) = tr(BCA) for any matrices
of compatible sizs, and so tr(A2) = tr(UΛU>UΛU>) = tr(UΛ2U>) = tr(Λ2U>U) =
tr(Λ2) =

∑n
i=1 Λ2

ii.)

3. The (j, j) entry of A>B is [A>B]jj =
∑n

i=1AijBij . (Another way to think of this is that it
is the dot product of the jth column of B and the jth row of A>, which is the jth column of
A.) The trace is the sum of the diagonal entries, so is

tr(A>B) =

m∑
j=1

[A>B]jj =

m∑
j=1

n∑
i=1

AijBij .

4. Let f(x) = exp(a>x).

(a) Computing the partial derivative with respect to the ith variable gives ∂f
∂xi

= ai exp(a>x).

Therefore ∇f(x) = exp(a>x)a.

(b) Computing the second partial derivative gives ∂2f
∂xi∂xj

= aiaj exp(a>x). ThereforeHf (x) =

exp(a>x)aa>.

(c) Since exp(a>x) > 0 for all x, and a 6= 0, the rank of Hf (x) is one, because aa> has
rank one.

(What happens, in general, for functions f : Rn → R of the form f(x) = g(a>x) where g is
a smooth univariate function?)
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5. (a) S is neither open nor closed. To see that it is not open, we note that (x, y) = (1, 1) is
not an interior point of S. To see that it is not closed, we see that (−1, 0) is not an
interior point of the complement of S.

(b) S is closed. This is because f(x, y) = x2 + 2xy − y2 is continuous, so S = {(x, y) :
−1 ≤ f(x, y) ≤ 0} = f−1([−1, 0]) is the preimage of a closed set under a continuous
mapping, and so is a closed set.

6. (a) The interior of S is the empty set, since no point of S has an open neighborhood
contained in S. Since S is closed, S equals its closure.

(b) Since S is open, the interior of S is S itself. One way to understand the closure of S
is to consider the complement S = R2 \ S = {(0, 0)}. The interior of S = ∅. Now the
closure of S is the complement of the interior of S. Therefore the closure of S is R2.

7. The infimum is 0. First note that 0 is a lower bound on S = {e−x : x ∈ R} because
0 ≤ e−x for all x ∈ R. To see that this is the greatest lower bound, we argue by contradiction.
Suppose there was some ε > 0 that was a lower bound on S. If x > loge(1/ε) then e−x < ε,
contradicting our assumption that S is a lower bound. So no positive real number can be a
lower bound on {e−x : x ∈ R}.
The infimum is not achieved, since there is no real number z such that e−z = 0.
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