Quiz for Bayesian Inference and Computation, AMSI 2024

Problem 1

Write an R function, called mymax, which takes input values (a; b; c), and returns the maximum of the three values.

Problem 2

Suppose that $X \sim N(0,1)$, that is, a Gaussian distribution with zero mean and unit variance, and let

$$
Y=\frac{\exp (X)}{1+\exp (X)}
$$

Find the probability density function of X and Y.

Problem 3

1. Complete the square of the expression $x^{2}+10 x-3$, i.e., find a, h and k such that

$$
x^{2}+10 x-3=a(x-h)^{2}+k .
$$

2. Suppose now that $x, b \in \mathcal{R}^{p}, c \in \mathcal{R}$, and that $A \in \mathcal{R}^{p \times p}$ is a symmetric, invertible matrix. Find $h \in R^{p}$ and $k \in \mathcal{R}$ such that

$$
x^{\top} A x+x^{\top} b+c=(x-h)^{\top} A(x-h)+k .
$$

Problem 4

Determine the maximum likelihood estimates of μ and σ^{2} when $X_{1}, X_{2}, \ldots, X_{n}$ are independent $N\left(\mu, \sigma^{2}\right)$ variables.

Problem 5

Let $N\left(x \mid \mu_{1}, \sigma_{1}^{2}\right)$ and $N\left(x \mid \mu_{2}, \sigma_{2}^{2}\right)$ denote two normal densities. Show that the product of the two densities is proportional to a normal density. What is the expected value and variance of this new density?

Quiz Solutions for Bayesian Inference and Computation, AMSI 2024

Problem 1

```
myMax=function(a,c,b) {
    return(max(a,b,c)
}
```


Problem 2

The density of X is

$$
f_{X}(x)=\exp \left(-x^{2} / 2\right) / \sqrt{2 \pi}
$$

For the density of Y, we use the transformation of random variables theorem

$$
f_{Y}(y)=f_{X}\left(h^{-1}(y)\left|\frac{d h^{-1}(y)}{d y}\right|\right.
$$

where $y=h(x)=\frac{\exp (x)}{1+\exp (x)}$ and $h^{-1}(y)=\log (y /(1-y))$ and $\frac{d}{d y} h^{-1}(y)=$ $1 / y+1 /(1-y)=1 /(y(1-y))$. Thus

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} \log \left(\frac{y}{1-y}\right)^{2}\right) \frac{1}{y(1-y)}, \quad 0<y<1
$$

Problem 3

For Part 1, expand

$$
a(x-h)^{2}+k=a x^{2}-2 a h x+a h^{2}+k
$$

then matching the powers of x, we have $a=1,-2 a h=10 ; h=-5$ and $a h^{2}+k=-3 ; k=-28$.

For Part 2, we know that $A=A^{T}$, and expanding the right hand side, we have

$$
\begin{aligned}
(x-h)^{T} A(x-h)+k & =(x-h)^{T}(A x-A h)+k \\
& =x^{T} A x-h^{T} A x-x^{T} A h+h^{T} A h+k
\end{aligned}
$$

now, since x, h are $p \times 1, h^{T} A x=x^{T} A h$ since this is scalar and

$$
h^{T} A x=\left(h^{T} A x\right)^{T}=x^{T} A^{T} h=x^{T} A h,
$$

so we ave that $b=-2 A h$ and

$$
h=-\frac{1}{2} A^{-1} b
$$

and $h^{T} A h+k=c=\frac{1}{4}\left(A^{-1} b\right)^{T} A A^{-1} b+k$, therefore

$$
k=c-\frac{1}{4}\left(A^{-1} b\right)^{T} A A^{-1} b=c-\frac{1}{4} b^{T} A^{-1} b
$$

Problem 4 The logarithm of the likelihood function is

$$
\begin{aligned}
\log \mathcal{L}\left(\mu, \sigma^{2}\right) & =\log \prod_{i=1}^{n} f\left(X_{i} ; \mu, \sigma^{2}\right) \\
& =\log \prod_{i=1}^{n}\left\{\left(2 \pi \sigma^{2}\right)^{-1 / 2} e^{-\left(X_{i}-\mu\right)^{2} /\left(2 \sigma^{2}\right)}\right\} \\
& =-(n / 2) \log (2 \pi)-(n / 2) \log \left(\sigma^{2}\right)-\left(2 \sigma^{2}\right)^{-1} \sum\left(X_{i}-\mu\right)^{2}
\end{aligned}
$$

Thus,

$$
(\partial / \partial \mu) \log \mathcal{L}\left(\mu, \sigma^{2}\right)=\left(\sigma^{2}\right)^{-1} \sum\left(X_{i}-\mu\right)
$$

and

$$
\left(\partial / \partial \sigma^{2}\right) \log \mathcal{L}\left(\mu, \sigma^{2}\right)=-(n / 2)\left(\sigma^{2}\right)^{-1}+\frac{1}{2}\left(\sigma^{2}\right)^{-2} \sum\left(X_{i}-\mu\right)^{2}
$$

Clearly

$$
(\partial / \partial \mu) \log \mathcal{L}\left(\mu, \sigma^{2}\right)=0 \quad \text { if and only if } \mu=\bar{X}
$$

for all $\sigma^{2}>0$. Hence, both partial derivatives equal zero if and only if

$$
\mu=\bar{X} \quad \text { and } \quad-(n / 2)\left(\sigma^{2}\right)^{-1}+\frac{1}{2}\left(\sigma^{2}\right)^{-2} \sum\left(X_{i}-\bar{X}\right)^{2}=0
$$

This is equivalent to

$$
\mu=\bar{X} \quad \text { and } \quad \sigma^{2}=\frac{1}{n} \sum\left(X_{i}-\bar{X}\right)^{2} .
$$

Assuming that this does correspond to a global maximum of $\log \mathcal{L}\left(\mu, \sigma^{2}\right)$ the maximum likelihood estimates of μ and σ^{2} are

$$
\hat{\mu}=\bar{X} \quad \text { and } \quad \hat{\sigma}^{2}=\frac{1}{n} \sum\left(X_{i}-\bar{X}\right)^{2} .
$$

Problem 5

A normal density of of the form

$$
\begin{align*}
N\left(x \mid \mu_{n}, \sigma_{n}^{2}\right) & \propto \exp \left(-\frac{1}{2 \sigma_{n}^{2}}\left(x-\mu_{n}\right)^{2}\right) \\
& \propto \exp \left(-\frac{1}{2 \sigma_{n}^{2}} x^{2}+\frac{\mu_{n}}{\sigma_{n}^{2}} x\right) \tag{1}
\end{align*}
$$

and a product of two normals is

$$
\begin{aligned}
N\left(x \mid \mu_{1}, \sigma_{1}^{2}\right) N\left(x \mid \mu_{2}, \sigma_{2}^{2}\right) & \propto \exp \left(-\frac{1}{2 \sigma_{1}^{2}}\left(x-\mu_{1}\right)^{2}\right) \exp \left(-\frac{1}{2 \sigma_{2}^{2}}\left(x-\mu_{2}\right)^{2}\right) \\
& \propto \exp \left(-\frac{1}{2 \sigma_{1}^{2}}\left(x^{2}-2 \mu_{1} x\right)-\frac{1}{2 \sigma_{2}^{2}}\left(x^{2}-2 \mu_{2} x\right)\right) \\
& \propto \exp \left(-\frac{\left(\sigma_{2}^{2}+\sigma_{1}^{2}\right)}{2 \sigma_{1}^{2} \sigma_{2}^{2}} x^{2}+\frac{\left(\sigma_{2}^{2} \mu_{1}+\sigma_{1}^{2} \mu_{2}\right)}{\sigma_{1}^{2} \sigma_{2}^{2}} x\right)
\end{aligned}
$$

matching this to the form in (1), we get

$$
\frac{1}{\sigma_{n}^{2}}=\frac{\sigma_{2}^{2}+\sigma_{1}^{2}}{\sigma_{1}^{2} \sigma_{2}^{2}}=\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}
$$

and

$$
\frac{\mu_{n}}{\sigma_{n}^{2}}=\frac{\sigma_{2}^{2} \mu_{1}+\sigma_{1}^{2} \mu_{2}}{\sigma_{1}^{2} \sigma_{2}^{2}}=\frac{1}{\sigma_{1}^{2}} \mu_{1}+\frac{1}{\sigma_{2}^{2}} \mu_{2}
$$

so

$$
N\left(x \mid \mu_{1}, \sigma_{1}^{2}\right) N\left(x \mid \mu_{2}, \sigma_{2}^{2}\right) \propto N\left(x \mid \mu_{n}, \sigma_{n}^{2}\right)
$$

and

$$
\mu_{n}=w_{1} \mu_{1}+w_{2} \mu_{2}, \quad w_{1}=\frac{\frac{1}{\sigma_{1}^{2}}}{\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}} \text { and } w_{2}=\frac{\frac{1}{\sigma_{2}^{2}}}{\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}}
$$

and

$$
\sigma_{n}^{2}=\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right)^{-1}
$$

