
AMSI Summer School 2024 - A century of harmonic analysis
Preparatory Quiz

The following questions should give you a rough idea of the background required. If you get stuck,
try think on it for awhile. If you find that you are still unable to make progress, the solutions can
be found below.

1. (a) If f : Rn → C is a smooth function, compute the gradient of the function e|f(x)|
2
.

(b) For t > 0 and x ∈ Rn, show that the integral∫
Rn

e−t|ξ|2e2ix·ξdξ

converges absolutely, and is equal to πn/2

tn/2 e
− |x|2

t . Throughout the course, i :=
√
−1.

(Hint: First consider the case t = 1, and use part (a).)
(c) For t > 0 and x ∈ Rn, show that the integral∫

Rn

|ξ|2e−t|ξ|2e2ix·ξdξ

converges absolutely, and evaluate the integral. (Hint: Use part (b).)

2. Suppose a sequence of functions {fj : R → R} converges uniformly to a function f : R → R, and
another sequence of functions {gj : R → R} converges uniformly to a function g : R → R.
(a) Show that the sum {fj + gj} converges uniformly to f + g on R.
(b) Show that the product {fjgj} might not converge uniformly to fg on R.
(c) Can you add some assumptions to recover a positive result in part (b)?

3. Let  y1
...
yn

 =

 a11 . . . a1n
...

. . .
...

an1 . . . ann


 x1

...
xn


where xi, yi and aij are all real numbers.
(a) Suppose the sum of absolute values of the entries in each row and each column of the square

matrix above is at most A, i.e.

sup
1≤j≤n

n∑
i=1

|aij | ≤ A and sup
1≤i≤n

n∑
j=1

|aij | ≤ A.

Show that the Euclidean norm of y is at most A times that of x, i.e.( n∑
i=1

|yi|2
)1/2

≤ A
( n∑

j=1

|xj |2
)1/2

.

(b) Under the same assumptions in (a), show that for any p > 1,( n∑
i=1

|yi|p
)1/p

≤ A
( n∑

j=1

|xj |p
)1/p

.

(c) Show that if |a|, |b|, |c| ≤ 1, x0 = xn+1 = 0 and x1, . . . , xn ∈ R, then
n∑

i=1

|axi−1 + bxi + cxi+1|p ≤ 3p
n∑

i=1

|xi|p.
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4. It would also be nice to try the following multiple choice questions on Terry Tao’s webpage:
http://scherk.pbworks.com/w/page/14864228/Quiz:Inequalities

http://scherk.pbworks.com/w/page/14864240/Quiz:Series

http://scherk.pbworks.com/w/page/14864230/Quiz3AInnerproductspaces

(Solutions of these questions are provided on the respective pages.)

Solution:

1. (a) Using the chain rule, we have ∇e|f(x)|
2
= 2e|f(x)|

2∇f(x) for every i = 1, . . . , n.

(b) The integral converges absolutely because
∫
Rn e

−t|ξ|2dξ < ∞, which in turn follows from the
dimension n = 1 case using Fubini’s theorem.
For t = 1, we verify that

π−n/2e|x|
2

∫
Rn

e−|ξ|2e2ix·ξdξ = π−n/2

∫
Rn

e−|ξ+ix|2dξ

whereas the last integral is independent of x: in fact, one can differentiate the integral
(justify this!) with respect to x, and observe that

∇x

∫
Rn

e−|ξ+ix|2dξ =

∫
Rn

−2i(ξ + ix)e−|ξ+ix|2dξ =

∫
Rn

i∇ξe
−|ξ+ix|2dξ = 0

by the fundamental theorem of calculus. This shows

π−n/2

∫
Rn

e−|ξ+ix|2dξ = π−n/2

∫
Rn

e−|ξ|2dξ = 1,

as desired.
(c) The integral converges absolutely because

∫
Rn |ξ|2e−t|ξ|2dξ < ∞ (the polynomial growth of

|ξ|2 at infinity is killed by the exponential decay of e−t|ξ|2 at infinity). In fact, the integral
is the − ∂

∂t derivative of the integral in part (b), which is thus

− ∂

∂t

(πn/2

tn/2
e−

|x|2
t

)
= − π

n
2

t
n
2
+2

(
|x|2 − n

2
t
)
e−

|x|2
t

for t > 0 and x ∈ Rn.

2. (a) Given ε > 0, there exists N ∈ N so that for all n ≥ N ,

sup
x∈R

|fn(x)− f(x)| ≤ ε

2
and sup

x∈R
|gn(x)− g(x)| ≤ ε

2

It follows that

sup
x∈R

|[fn + gn](x)− [f + g](x)| ≤ sup
x∈R

|fn(x)− f(x)|+ sup
x∈R

|gn(x)− g(x)|

≤ ε

2
+

ε

2
= ε.

This shows {fn + gn} converges uniformly to f + g on R.
(b) Let fn(x) = x + 1

n , gn(x) = x, f(x) = x and g(x) = x. Then fn converges to f uniformly
on R, and gn converges uniformly to g on R, but

|fn(x)gn(x)− f(x)g(x)| =
∣∣∣x(x+

1

n

)
− x2

∣∣∣ = |x|
n
,

so

sup
x∈R

|fn(x)gn(x)− f(x)g(x)| = sup
x∈R

|x|
n

= ∞

for every n ∈ N, which shows that {fngn} does not converge to fg on R.
2
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(c) If additionally both f and g are bounded functions on R, say supx∈R |f(x)|+supx∈R |g(x)| ≤
M for some finite M , then fngn converges uniformly to fg on R. This is because then both
{fn} and {gn} are uniformly bounded on R: there exists M ′ ∈ R such that

sup
n∈N

sup
x∈R

|fn(x)|+ sup
n∈N

sup
x∈R

|fn(x)| ≤ M ′.

Then

sup
x∈R

|fn(x)gn(x)− f(x)g(x)|

≤ sup
x∈R

|fn(x)||gn(x)− g(x)|+ sup
x∈R

|g(x)||fn(x)− f(x)|

≤ M ′ sup
x∈R

|gn(x)− g(x)|+M sup
x∈R

|fn(x)− f(x)| → 0

as n → ∞. This shows {fngn} converges uniformly to fg on R under the additional
hypothesis.

3. (a) First, for i = 1, . . . , n we have yi =
∑n

j=1 aijxj so

|yi| ≤
n∑

j=1

|aij ||xj | =
n∑

j=1

|aij |1/2(|aij |1/2|xj |)

By the Cauchy-Schwarz inequality, we have

|yi|2 ≤
( n∑

j=1

|aij ||xj |2
)( n∑

j=1

|aij |
)
≤ A

n∑
j=1

|aij ||xj |2.

Summing over i = 1, . . . , n gives
n∑

i=1

|yi|2 ≤ A

n∑
j=1

( n∑
i=1

|aij |
)
|xj |2 ≤ A2

n∑
j=1

|xj |2.

This gives the desired inequality.
(b) We can follow a similar proof as above, except that we use Hölder’s inequality to

|yi| ≤
n∑

j=1

|aij ||xj | =
n∑

j=1

|aij |(p−1)/p(|aij |1/p|xj |)

in lieu of Cauchy-Schwarz. We obtain, for every i = 1, . . . , n,

|yi|p ≤
( n∑

j=1

|aij |
)p−1( n∑

j=1

|aij ||xj |p
)
≤ Ap−1

n∑
j=1

|aij ||xj |p

and hence
n∑

i=1

|yi|p ≤ Ap−1
n∑

j=1

( n∑
i=1

|aij |
)
|xj |p ≤ Ap

n∑
j=1

|xj |p.

(c) We apply the above result with aij = 0 if |i− j| > 1, aij = a if j = i− 1, aij = b if j = i and
aij = c if j = i+ 1. We have

sup
1≤j≤n

n∑
i=1

|aij | ≤ 3 and sup
1≤i≤n

n∑
j=1

|aij | ≤ 3,

and if yi =
∑n

j=1 aijxj , then

yi = axi−1 + bxi + cxi+1.
3



So the previous bounds gives
n∑

i=1

|axi−1 + bxi + cxi+1|p ≤ 3p
n∑

j=1

|xj |p.
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