
Pre-enrolment Quiz
Lecturer: Volker Schlue (University of Melbourne) Course title: General Relativity

Exercise 1. Consider two observers, moving on a line with different, but constant
speeds relative to each other. Give a description of this situation in the context of special
relativity, and compute the rate of clocks in one system relative to the other.

Exercise 2. State and derive the local conservation law for electric charges in Maxwell’s
theory.

Exercise 3. Suppose g is a Riemannian metric on the plane, which expressed in polar
coordinates (r, φ) takes the form

g = dr2 +R(r)2dφ2 .

Compute the arclength of the circles Sr of constant radius r. For which choice of the
function R(r) is the geometry of the plane “non-euclidean”?

Exercise 4. A volume form ω on a n-dimensional vector space V is an n-linear form
which is totally antisymmetric and nondegenerate. Let V be endowed with an inner
product ⟨·, ·⟩. Show that associated to the inner product ⟨·, ·⟩ is a volume form ω, which
is well-defined by the condition, that for some orthonormal basis (E1, . . . , En):

ω(E1, . . . , En) = 1 .

Exercise 5. Given a finitely extended distribution of masses in Euclidean space, compute
the Newtonian gravitational force exerted on a test particle at great distances. In what
sense is it true that to “leading order” the force only depends on the total mass of the
configuration that creates the gravitational field?
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Answer 1. The situation is best described in 1 + 1-dimensional Minkowski space. In
the reference frame of the first observer we can introduce coordinates (t, x) so that the
Minkowski metric takes the form

η = −c2dt2 + dx2 . (0.1)

The world line of the second observer, moving at speed v relative to the first, is then
described by x = x0 + vt. In fact, for any x0 these lines describe observers which are
considered at rest relative to the second frame of reference, and x0 can be used as a
coordinate in that reference frame. Since

dx = dx0 + vdt (0.2)

the metric in these coordinates then takes the form

η = − c2dt2 + (dx0 + vdt)2 = −(c2 − v2)dt2 + dx2
0 + 2vdx0dt

= − (1 − v2/c2)
(
cdt− v/c

1 − v2/c2 dx0
)2

+ 1
1 − v2/c2 dx2

0

= − α2θ2 + dσ2

(0.3)

Therefore, the rate of clocks measured by the second observer has changed by a factor of

α =
√

1 − v2/c2 (0.4)

in comparison the clocks of the first observer.
Remark 0.1. What does this formula tell you about the measurement of distances?
Answer 2. According to Maxwell’s theory, the electric and magnetic fields can be viewed
as the components Fµν of the Faraday tensor F , a 2-form on Minkowski space (R3+1, η),
satisfying the equations

∂

∂xµ
Fαβ + ∂

∂xα
Fβµ + ∂

∂xβ
Fµα = 0 ∂

∂xα
Fαβ = Jβ , (0.5)

where x0 = ct, and Jµ are the components of the electric current density J , a vectorfield
on Minkowski space. Since Fµν = ηµαηνβFαβ is anti-symmetric in (µν), it follows from
the second equation that

∂

∂xβ
Jβ = ∂2

∂xαxβ
Fαβ = 0 . (0.6)

If we denote by J0 = cρ the electric charge density, and by J i = J̄ i : i = 1, 2, 3 the electric
current density, in the chosen reference frame, then this becomes the continuity equation,

∂ρ

∂t
+ ∇ · J̄ = 0 , (0.7)

which expresses in local form the conservation of charge in this theory.
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Answer 3. The circles Sr are parametrized by curves γr(t) = (r cos(t), r sin(t)) with
tangent vector γ̇r(t) = ∂

∂θ . Hence

L[Sr] =
∫ 2π

0

√
g(γ̇r(t), γ̇r(t))dt = 2πR(r) . (0.8)

Hence the ratio of the circumference of a circle to its diameter is not equal to π unless
R(r) = r.

Remark 0.2. If r is the distance “as the crow flies” from ANU to any location in Australia,
is then R(r) > r or R(r) < r for this geometry to describe the surface of the Earth?

Answer 4. We have to verify that the definition of the volume form ω, by the condition
that

ω(E1, . . . , En) = 1 , (0.9)

does not actually depend on the choice of the orthonormal basis (E1, . . . , En).
Consider more generally ω(X1, . . . , Xn), were X1, . . . , Xn ∈ V . We can expand any

vector Xi in the basis (E1, . . . , En):

Xi =
n∑

j=1
(Xi)jEj : i = 1, . . . , n . (0.10)

The coefficients (Xi)j : j = 1, . . . , n form the ith column of a matrix X. The claim is that
by the definition of the determinant,

ω(X1, . . . , Xn) = det(X) ω(E1, . . . , En) . (0.11)

Let us verify this directly in the case n = 2:

X1 = (X1)1E1 + (X1)2E2 X2 = (X2)1E1 + (X2)2E2 . (0.12)

Then by linearity, and antisymmetry,

ω(X1, X2) =(X1)1(X2)1ω(E1, E1) + (X1)1(X2)2ω(E1, E2)
+ (X1)2(X2)1ω(E2, E1) + (X1)2(X2)2ω(E2, E2)

=(X1)1(X2)2 − (X1)2(X2)1 = detX
(0.13)

Since any two orthonormal bases, of the same orientation, are related by a special
orthogonal linear transformation,

E′
i =

∑

j

O j
i Ej detO = 1 , (0.14)

the statement that (0.9) is well-defined follows.
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Answer 5. A finitely extended distribution of masses in Euclidean space can be described
by a function ρ : R3 → [0,∞) of compact support which gives the density of mass ρ(x)
at a given point x ∈ R3. The Newtonian potential ψ : R3 → R is then determined as the
solution of the PDE

∆ψ = 4πρ (0.15)

with the boundary condition that ψ(x) → 0 (|x| → ∞). Using the fundamental solution
of the Laplacian on R3, we obtain

ψ(x) = −
∫

R3

ρ(y)
|x− y|dy . (0.16)

Since the function ρ is of compact support, we can find R > 0 sufficiently large so that
supp(ρ) ⊂ BR(0). For distances |x| ≫ R, we then have that that

ψ(x) ≃ −
∫

BR

ρ(y)
|x| dy = −M

|x| . (0.17)

It then follows that the force exerted on a test particle of mass m is

F (x) = −m∇ψ(x) ≃ −Mm
x

|x|3 . (0.18)

Remark 0.3. In (0.17) we have replaced |x − y|−1 for y ∈ BR(0) by |x|−1 for |x| ≫ R.
Compute the next order in the expansion in 1/|x|, and characterize its contribution to
the force F (x).
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